

Northern River Schools Cluster

Geotechnical Investigation Report – Blakebrook Public School

ADCO Construction Pty Ltd

Reference: SYDGE319200AI Rev.1 (ADCO Reference: BLA-GEO-PP-RPT-0002)

2 August 2023

NORTHERN RIVER SCHOOLS CLUSTER

Geotechnical Investigation Report – Blakebrook Public School

Report reference number: SYDGE319200AI Rev.1 ADCO reference number: BLA-GEO-PP-RPT-0002

PREPARED FOR

ADCO Construction Pty Ltd Level 2, 7-9 West Street North Sydney NSW 2060

PREPARED BY

Tetra Tech Coffey Level 19, Tower B, Citadel Tower, 799 Pacific Highway Chatswood NSW 2067 Australia p: +61 2 9406 1000 f: +61 2 9415 1678 ABN 55 139 460 521

QUALITY INFORMATION

Revision history

Revision	Description	Date	Author	Reviewer	Approver
0	Final	1 August 2023	I Geng	V Nguyen	V Nguyen
1	Final	2 August 2023	I Geng	V Nguyen	V Nguyen

Distribution

Report Status	No. of copies	Format	Distributed to	Date
0	1	PDF	ADCO	1 August 2023
Rev.1	1	PDF	ADCO	2 August 2023

Restriction on Disclosure and Use of Data

Insert disclaimer here. If disclaimer statement is long, or if there are multiple disclaimers, text will flow to second page.

Template #

CONTENTS

1.	INTR	ODUCTION	1
2.	SITE	DESCRIPTION	1
3.	REGI	ONAL GEOLOGY	2
4.	INVE	STIGATION METHODS	2
	4.1	Field Investigation	2
	4.2	Laboratory Testing	3
5.	RESU	JLTS OF INVESTIGATION	3
	5.1	Encountered Ground Conditions	3
	5.2	Geotechnical Model	4
	5.3	Groundwater	5
	5.4	Laboratory Testing Results	5
6.	DISS	CUSSION AND RECOMMENDATIONS	6
	6.1	Earthworks	6
		6.1.1 Subgrade Preparation	6
		6.1.2 Engineering Fill Compaction	6
		6.1.3 Re-use of Material	7
	6.2	Excavations Conditions	7
	6.3	Unsupported Excavations	7
	6.4	Retaining Wall Design	7
	6.5	Building Foundations	8
		6.5.1 Shallow Footings & Slab on Ground	8
		6.5.2 Piled Foundation	8
	6.6	Design CBR Values and Pavement Design1	1
	6.7	Estimate Long-term Movement of Ground due to Groundwater Varitions1	2
	6.8	Site Classification1	2
	6.9	Earthquake Design1	2
	6.10	Soil Aggressivity1	2

LIST OF TABLES

Table 1: Geotechnical laboratory testing schedule	3
Table 2: Summary of site geotechnical model (Option 3)	4
Table 3: Summary of site geotechnical model (Option 4)	4
Table 4: Summary of site geotechnical model (Option 5)	4
Table 5: Summary of site geotechnical model	5
Table 6: California Bearing Ratio and compaction test results	5
Table 7: Geotechnical soil classification test results	5
Table 8: Moisture content and soil Aggressivity test results	6
Table 9: Recommended batter slopes for geotechnical units	7
Table 10: Recommended geotechnical model and relevant parameters	7
Table 11: Summary of modulus of subgrade reaction and Young's modulus for slab on ground design	8
Table 12: Recommended geotechnical parameters for driven pile foundation design	9
Table 13: Recommended geotechnical model and relevant parameters	12

LIST OF FIGURES

Figure 1 – Local geology condition at Blakebrook Public School	2
Figure 2 – End Bearing Capacity of Pile socket in Stiff Clay (Unit 3B) Underlain by a Firm Clayey Layer (Unit	t
3A)	.10
Figure 3: Sketch for proposed drainage layer under pavement	.11

APPENDICES

APPENDIX A: BOREHOLE LOCAITON PLAN	13
APPENDIX B: GEOTECHNICAL SECTIONS	14
APPENDIX C: ENGINEERING BOREHOLE LOGS	15
APPENDIX D: BOREHOLE LOGS FROM PREVIOUS GEOTECHNICAL INVESTIGATION (DOUGLAS PARTNERS)	16
APPENDIX E: LABORATORY TESTING RESULTS	17

1. INTRODUCTION

This report presents the results of geotechnical site investigation carried out by Tetra Tech Coffey (Coffey) at Blakebrook Public School as part of the Northern River Schools Cluster (Stage 3-8) project. The geotechnical investigation was commissioned by ADCO Construction Pty Ltd (ADCO) and completed in general accordance with our fee proposal (Ref: SYDGE319200AA dated 16 March 2023 and SYDGE319200AE dated 27 June 2023).

The geotechnical investigation comprised the drilling of four geotechnical boreholes within the proposed building footprint to cover masterplan Option 3 to Option 5 and two environmental boreholes for contamination investigation purposes.

This report presents the results of geotechnical investigation and provide advice and recommendations for the proposed school development including the followings:

- Site description.
- Investigation procedure and methodology.
- Regional geology, subsurface conditions, and geotechnical model for the site.
- Groundwater conditions.
- Earthworks and site preparation.
- Suitability of exposure of soils to construction traffic.
- Modulus of Subgrade Reaction and Young's modulus for slabs on ground design.
- Temporary and permanent batter slopes.
- Design parameters for retaining wall design.
- Allowable bearing capacities and footing design options including high level pad or raft.
- Recommendations on suitable building footing systems including screw piles and driven piles, and relevant geotechnical design parameters.
- Design CBR values for pavements.
- Estimated long-term movement of ground due to ground water table variations.
- Classification of the site in accordance with AS 2870 based on reactivity of soil.
- Parameters for Earthquake design according to AS1170.4.
- Aggressivity of soil to concrete and steel structures.
- Any construction difficulties and solutions.

Contamination investigation results are provided in a separate report (Ref: SYDGE319200R02 dated 25 July 2023). The available geotechnical information from Douglas Partners' report (Ref: 216628.00.R.004.Rev0 dated 14 November 2022) has been incorporated to this report. For convenience, the available borehole logs from the previous geotechnical investigation report by Douglas Partners are included in Appendix D (refer to Douglas Partners report for further information).

2. SITE DESCRIPTION

Blakebrook Public School is located at 417 Rosehill Road, Blakebrook, New South Wales. Based on the site survey information, the site ground surface sloped gently from approximately of RL 15.5mAHD at the northeast boundary to approximately RL13.5mAHD at the south-west boundary. The different ground elevation across the school boundary is up to approximately 2m.

3. REGIONAL GEOLOGY

According to the Geological Survey of Tweed Heads map, the site is underlain by Quaternary alluvium (Q_af) comprising "silt, very fine to medium grained lithic to quartz rich sand, clay". The area to the north of the site is indicated to be underlain by Lismore Basalt (NMIal) as shown in Figure 1.

Figure 1 – Local geology condition at Blakebrook Public School

4. INVESTIGATION METHODS

4.1 FIELD INVESTIGATION

The fieldwork was carried out by Coffey on 7 and 10 July 2023, comprising the following:

- Drilling of four geotechnical boreholes BLA-C-BH1 to BLA-C-BH4 to a depth between 8.3m and 11m below the existing ground surface.
- Drilling of two shallow boreholes (BLA-C-BH5 and BLA-C-BH5) to 1m depth for soil contamination testing purposes.

Boreholes BLA-C-BH1 to BLA-C-BH4 were terminated at depth between 8.3m to 11m due to auger refusal on bedrock. The approximately borehole locations are shown in the location plan in Appendix A.

Prior to any ground penetration, a Before You Dig Australia (BYDA) request was made for the subject site. Each borehole location was compared with the DBYD plans and services located by an accredited service locator.

The boreholes were drilled using a truck mounted drilling rig. Solid flight augers were used for drilling in soils up to maximum depth of 11m. Standard Penetration Tests (SPT) were carried out at selected depths to assess soil strength and to obtain samples for logging. On completion of drilling, boreholes were backfilled with cuttings to the initial ground surface.

Coffey geotechnical engineers were present throughout the drilling operation to sample, record test results and log material encountered. The Engineering Borehole Logs are presented in Appendix C together with Coffey soil explanation sheets.

4.2 LABORATORY TESTING

On completion of fieldwork, selected soil samples from the boreholes were sent to the NATA accredited laboratory for laboratory testing. Table 1 below provides the testing schedule that Coffey submitted.

Laboratory Test	Quantity	Method
Moisture Content	4	AS 1289.2.1.1
Atterberg Limits	4	AS 1289.3.1.1 / 2.1
Linear Shrinkage	4	AS 1289.3.4.1
CBR	4	AS 1289.6.1.1
Soil aggressivity suite	4	Inorg-001, Inorg-002 and Inorg-081

Table 1: Geotechnical laboratory testing schedule

Additional samples were collected from the investigation locations for the purposes of contamination assessment, which is presented in a separate Coffey Report (Ref: SYDGE319200R02 dated 25 July 2023).

5. RESULTS OF INVESTIGATION

5.1 ENCOUNTERED GROUND CONDITIONS

General ground conditions

The encountered subsurface ground profile at the site was consistent with the published and anticipated geology. The encountered ground profile typically comprises 0.1m to 0.2m thick topsoil underlain by firm to stiff alluvial clay between 6.2m to 8.2m thick, followed by very stiff to hard residual clay. Fill up to 1.2m thick was encountered in borehole BLA-C-BH3. All four geotechnical boreholes were terminated at depth between 8.3m to 11m due to auger refusal on possible extremely weathered rock.

It should be noted that that the encountered stiff to very stiff clay between depth 0.1m to 5.95m was described as residual soil in the Douglas Partners' geotechnical report (Ref: Ref: 216628.00.R.004.Rev0 dated 14 November 2022). Based on the lithology description, the in-situ resistance testing results (SPT), the geology map, and the additional information of this investigation, Coffey considers that the encountered stiff to very stiff clay between depth 0.1m to 5.95m in the Douglas Partners boreholes was of alluvium soil.

Groundwater

The observed groundwater encountered in the boreholes are noted on the engineering borehole logs in Appendix C. During auger drilling of boreholes, groundwater was observed at depths between 4.2m and 8.0m below the current ground surface levels (estimated between RL 11.03 to RL 6.85m AHD).

It should be noted that the observed groundwater level from Douglas Partners boreholes is about 2 m depth which is higher than that was observed in the Coffey boreholes. Douglas Partners drilled the boreholes in 7 Oct 2022. Coffey completed drilling at this site on 7 July 2023. Review of the rainfall history records prior to 7 Oct 2022 and 7 July 2023 at Lismore Weather Station indicates that, within two months prior to the investigation dates, the accumulated rainfall records were approximately 20mm and 10mm for the former and later respectively. The different observed groundwater levels in Oct 2022 and July 2023 could have been due to the different rainfall amount prior to the drilling dates.

5.2 GEOTECHNICAL MODEL

Using the subsurface information from the geotechnical investigation, the encountered ground conditions have been characterised into the geotechnical units presented in Table 2 to Table 4 for three masterplan options. A typical geotechnical cross section has been created showing the subsurface geotechnical model and the geotechnical unit distribution with depth and elevation. The typical section location plan and the associated geotechnical section are included in Appendix B. The approximate location of the proposed new school building has been shown in the geotechnical section.

Table 2: Summary of site geotechnical model (Option 3)

Unit / Material	Description	Typical Unit Thickness (m)	Typical Soil Consistency
Unit 1 – Topsoil	Clay, medium plasticity, trace gravel and rootlets, trace wood strips	-	
Unit 3B (St) – Alluvium (Stiff)	Clay, Silty Clay, low to medium plasticity	3.6 – 4.3	Stiff to Very Stiff
Unit 3A (F) – Alluvium (Firm)	Silty Clay, Clay, low to medium plasticity, with clayey gravels	1.9 – 4.5	Firm
Unit 4 - Residual	Clay, Silty Clay, low to medium plasticity, trace gravels	> 2	Very Stiff to Hard

Table 3: Summary of site geotechnical model (Option 4)

Unit / Material	Description	Typical Unit Thickness (m)	Typical Soil Consistency
Unit 1 – Topsoil	Clay, medium plasticity, trace gravel and rootlets, trace wood strips	0.1 – 0.2	-
Unit 2 – Fill (localised)	Clay, low plasticity, with rock boulders	1.2	-
Unit 3B (St) – Alluvium (Stiff)	Clay, low plasticity	2-3.6	Stiff to Very Stiff
Unit 3A (F) – Alluvium (Firm)	Silty Clay, Clay, low to medium plasticity, trace gravels	4.5 - 6.2	Firm
Unit 4 - Residual	Silty Clay, Clay, low to medium plasticity, trace extremely weathered rock	> 1.6	Very Stiff

Table 4: Summary of site geotechnical model (Option 5)

Unit / Material	Description	Typical Unit Thickness (m)	Typical Soil Consistency	
Unit 1 – Topsoil	Clay, medium plasticity, trace gravel and rootlets, trace wood strips	0.1 – 0.2	-	
Unit 2 – Fill (localised)	Clay, low plasticity, with rock boulders	1.2	-	
Unit 3B (St) – Alluvium (Stiff)	Clay, low to medium plasticity	2 - 5.5	Stiff to Very Stiff	
Unit 3A (F) – Alluvium (Firm)	Clay, Silty Clay, low to medium plasticity, trace gravel	2.7 – 6.2	Firm	
Unit 4 - Residual	Clay, low to medium plasticity, trace extremely weathered rock	> 1.6	Very Stiff	

5.3 GROUNDWATER

A summary of the groundwater levels observed during the investigation are summarised in Table 5. However, it is expected that groundwater level varies at this site in response to climatic conditions. Those responses may not be immediate. In the absent of groundwater level monitoring data, it is recommended that a groundwater table at RL 13.0m be considered in the design.

Location	Ground Surface Elevation	Groundwater Level Observed		
Location	(mAHD)	(mBGL)	(mAHD)	
BLA-C-BH2	15.23	4.2	11.03	
BLA-C-BH3	14.85	8.0	6.85	
BLA-C-BH4	14.59	4.4	10.19	
BH1 (Douglas Partners)	13.80	2.4	11.40	
BH2 (Douglas Partners)	14.70	2.1	12.60	
BH3 (Douglas Partners)	15.20	2.3	12.90	
BH4 (Douglas Partners)	14.40	2.4	12.00	

Table 5: Summary of site geotechnical model

5.4 LABORATORY TESTING RESULTS

A summary of the results is provided in Table 6 to Table 8. The laboratory certificates are included in Appendix E.

	Det	ails		Soaked CBR and Compaction Test			
Location	Depth (m)	Material	MC before soaking (%)	DD before soaking (t/m³)	DD after soaking (t/m³)	Swell (%)	CBR (%)
BLA-C-BH1	0.1 – 0.5	Clay	37.2	1.33	1.32	0.5	10
BLA-C-BH2	0.5 – 1.0	Clay	22.4	1.35	1.36	-0.5	5
BLA-C-BH3	3 – 3.5	Clay	41.8	1.25	1.26	-1.0	8
BLA-C-BH4	0 – 0.5	Clay	36.9	1.34	1.34	0.0	11

Table 6: California Bearing Ratio and compaction test results

Notes to Table 6: MC: Moisture Content, DD: Dry Density, CBR: California Bearing Ratio

Location	Deta	ails	Moisture	Atterberg Limits and Linear Shrinkage						
Location	Depth (m)	Material	Content (%)	MC (%)	LL (%)	PL (%)	PI (%)	LS (%)		
BLA-C-BH1	2.3 – 2.75	Silty Clay	-	47.2	91	43	48	12		
BLA-C-BH1	6.8 – 7.25	Clay	37.0	-	-	-	-	-		
BLA-C-BH2	3.8 – 4.25	Silty Clay	-	57.5	61	32	29	12		
BLA-C-BH2	6.8 – 7.25	Silty Clay	63.5	-	-	-	-	-		
BLA-C-BH3	2.3 – 2.75	Clay	50.0	-	-	-	-	-		
BLA-C-BH3	5.3 – 5.75	Silty Clay	-	62.5	11	41	21	11		
BLA-C-BH4	2.3 – 2.75	Clay	-	55.0	70	39	31	13		

Looption	Deta	ails	Moisture	Atterberg Limits and Linear Shrinkage						
Location	Depth (m)	Material	Content (%)	MC (%)	LL (%)	PL (%)	PI (%)	LS (%)		
BLA-C-BH4	5.3 – 5.75	Clay	55.5	-	-	-	-	-		

Notes to Table 7: MC: Moisture Content, LL: Liquid Limit, PL: Plastic Limit, PI: Plasticity Index, LS: Linear Shrinkage

	Details		Mojeturo		Soil Aggres	sivity	Corrosion Classification		
Location	Depth (m)	Material	Content (%)	рН	Sulphate as SO4 (mg/kg)	Chloride (mg/kg)	Exposure – Concrete Piles	Exposure – Steel Piles	
BLA-C-BH1	0.8 – 1.25	Clay	29.9	5.3	<10	20	Mild	Non-Aggressive	
BLA-C-BH1	3.8 – 4.25	Silty Clay	37.6	5.1	20	30	Mild	Non-Aggressive	
BLA-C-BH2	0.8 – 1.25	Clay	29.9	5.3	<10	20	Mild	Non-Aggressive	
BLA-C-BH2	5.3 – 5.75	Silty Clay	40.9	5.2	20	20	Mild	Non-Aggressive	
BLA-C-BH3	3.8 – 4.25	Clay	36.4	4.5	<10	100	Moderate	Non-Aggressive	
BLA-C-BH3	8.3 – 8.75	Silty Clay	39.8	5.4	20	30	Mild	Non-Aggressive	
BLA-C-BH4	3.8 – 4.25	Clay	36.0	5.1	20	20	Mild	Non-Aggressive	
BLA-C-BH4	6.8 – 7.25	Clay	31.1	6.1	20	10	Non- Aggressive	Non-Aggressive	

Table 8: Moisture content and soil Aggressivity test results

6. DISSCUSSION AND RECOMMENDATIONS

6.1 EARTHWORKS

6.1.1 Subgrade Preparation

It is expected that Units 2 or Unit 3B below the existing ground surface would likely be the encountered subgrade over the site. Prior to the construction of subgrade layers (by engineered fill), topsoil, the existing hard stand and the underlying fill should be removed and stockpiled separately for appropriate reuse. The exposed subgrade material should be proof rolled with at least four passes of a non-vibratory smooth drum roller of minimum 12 tonne dead weight. Any soft or heaving areas should be excavated and replaced with engineered fill.

It is expected that trafficability in clayey materials (Unit 2s and 3B) for wheeled vehicles can be difficult during and following rainfall due to surface heaving and / or rutting. Granular fill is recommended for area underlain by clayey subgrade to improve trafficability.

6.1.2 Engineering Fill Compaction

For bulk earthworks using conventional earthmoving plant, fill material should be placed in layers not exceeding 300mm loose thickness and moisture conditioned to Standard Optimum Moisture Content (SOMC) $\pm 2\%$.

All engineered fill should be compacted to achieve a minimum dry density ratio of 98% SMDD (Standard Maximum Dry Density and moisture conditioned to SOMC \pm 2% at the time of compaction.

Earthworks construction should be constructed under Level 1 geotechnical inspection and testing as defined in AS3798-2007.

6.1.3 Re-use of Material

Unit 1 - Topsoil can be stockpiled and reused as landscaping material.

Unit 2 (clayey fill), Unit 3A (firm clay) and Unit 3B (stiff to very stiff clay) may be of highly reactive and cannot be used as structural fill under structure footing or subgrade, unless a form of reactive soil treatment be applied.

6.2 EXCAVATIONS CONDITIONS

It is understood that no basements are proposed for the school site. Excavations may be required for installation of underground services, shallow footing construction, lift pit, or to achieve design levels. Excavation of lift pit may be up to 2m below the existing ground surface and encountered Unit 2 (clayey fill) and Unit 3B (stiff clay). Hydrostatic uplift forces for lift pit should be designed using the recommended groundwater level (i.e., at RL 13.0mAHD). Shallow excavation (less than 1.5 to 2m depth) will typically encounter Unit 2 and 3B, and they can be readily excavated using conventional hydraulic excavator with bucket.

6.3 UNSUPPORTED EXCAVATIONS

For excavation less than 2m depth, batter slopes may be possible where excavations are set back sufficiently from adjacent structures and boundary (i.e., minimum 4m clearance distance). The batter slopes should be scaled following excavation to remove all loose materials which could slide or topple from the face during construction and hence pose a risk to construction personnel.

Table 9 provides a summary of the recommended batter slopes within 2m depth for each geotechnical units without subject to flood inundation and rapid drawdown. Excavation of permanent batters is not recommended due to the presence of shallow ground table at this school site.

Temporary batter stability must be observed regularly. Works must be stopped, and advice be sought if sign of batter instability be observed.

Unit / Material	Short Term Batter Slope (Up to 2 months)
Unit 2 – Fill	1.5H:1V
Unit 3B – Alluvium (stiff to very stiff)	1H:1V

Table 9: Recommended batter slopes for geotechnical units

6.4 RETAINING WALL DESIGN

Where unsupported, open excavation are impracticable, a temporary retaining wall, such as cantilever or sheetpile walls, can be considered during site construction. Table 10 presents recommended design parameters for the design of the temporary retaining wall where there is a level retained ground surface. Retaining wall analyses will need to consider surcharges, footing loads from adjacent structures and hydrostatic pressure.

Table 10: Recommended geotechnical model and relevant pa	oarameters.
--	-------------

Geological Unit	Description	γ (kN/m³)	S _u (kPa)	c' (kPa)	φ' (°)	<i>E</i> u (MPa)	<i>E</i> ' (MPa)	Ka	Kp	Ko	v
Unit 2 – Fill	Clay with rock boulders	17	30	1	22	5	2	0.45	2.20	0.60	0.3

Geological Unit	Description	γ (kN/m³)	S _u (kPa)	c' (kPa)	φ' (°)	<i>E_u</i> (MPa)	<i>E</i> ' (MPa)	Ka	Kp	K₀	v
Unit 3B – Alluvium	Clay (stiff to very stiff)	20	50	5	27	20	17	0.38	2.66	1.0	0.3
Unit 3A – Alluvium	Silty Clay/Clay (firm)	18	40	2	26	8	4	0.39	2.56	0.55	0.3
Unit 4 – Residual	Silty Clay/Clay (very stiff to hard)	21	150	7	29	75	64	0.35	2.88	1.0	0.3

Notes for Table 10: *Eu, E'* are undrained and drained Young's soil modulus respectively; S_u is undrained shear strength; c' drained cohesion; ϕ' is drained friction angle; K_a is coefficient of Active Earth pressure; K_p is coefficient of Passive Earth pressure; K_0 is initial horizontal stress ratio.

6.5 BUILDING FOUNDATIONS

6.5.1 Shallow Footings & Slab on Ground

Shallow foundation (pad or strip footing) may be founded in the Unit 3B (stiff alluvium clay) beyond approximately 1m depth below the existing ground surface. The recommended allowable bearing capacity in stiff clay is 85kPa with a minimum FoS of 3.0 against bearing failure.

An allowable bearing capacity of 85kPa can be adopted for the subgrade design for paved footpath over recompacted Unit 3B subgrade within 0.1m - 1m depth below the existing ground surface. Table 11 below provides a summary of the modulus of subgrade reaction and Young's modulus for slab on ground design.

Geological Unit	Description	Undrained Young's Modulus, <i>E_u</i> (MPa)	Drained Young's Modulus, <i>E</i> ' (MPa)	Constrained Soil Modulus, <i>M</i> MPa	Modulus of Subgrade Reaction (MN/m ³)
Unit 2 – Fill	Clay with rock boulders	5	2	3	1
Unit 3B – Alluvium	Silty Clay/Clay (stiff to very stiff)	8	6	7	2

Table 11: Summary of modulus of subgrade reaction and Young's modulus for slab on ground design

Notes for Table 11: Eu, E' are undrained and drained Young's soil modulus respectively; M is constrained soil modulus.

6.5.2 Piled Foundation

It is understood that project structural engineers are preferred to use driven pile (pre-cast concrete) or screw pile foundation at the site. A summary of each pile type is given below.

6.5.2.1 Driven Piles

For driven piles, the pile geotechnical capacity can be calculated depending on the pile shaft and base cross section areas. There are a number of key geotechnical factors that need to be taken into consideration when designing for pile geotechnical capacity:

- Geotechnical compression, tension, and lateral capacity.
- Conical uplift capacity or cone pull out failure.
- Drivability of driven steel piles.
- Strength reduction factors.
- Pile foundation defection.

- Pile spacing.
- Seismic actions.
- Negative friction from soft clay unit.

Geotechnical capacity contribution of the soil layer within the top depth of 1.5 times the pile diameter below the finished ground surface should be ignored in accordance with AS 2159 – Pile Design and Installation.

Preliminary recommended geotechnical parameters for pile foundation design are provided in Table 12.

Table 12: Recommended geotechnical parameters for driven pile foundation design

Geological Unit	Description	Ultimate End Bearing ⁽⁴⁾ (kPa)	Ultimate Shaft ⁽¹⁾ Adhesion (kPa)	Ultimate Lateral Capacity (kPa)	Lateral Subgrade Reaction ⁽²⁾ (MPa/m ³⁾
Unit 2 – Fill	Clay with rock boulders	5	2	3	1
Unit 3B – Alluvium	Clay (stiff to very stiff)	450	40	450	9 / dp
Unit 3A – Alluvium	Silty Clay/Clay (firm)	125	25	125	2 / dp
Unit 4 – Residual	Silty Clay/Clay (very stiff to hard)	1350	100	1350	32 / dp

Notes: (1) ultimate shaft capacity under compression load, a load factor of 0.7 be applied to obtain ultimate shaft capacity under tension load; (2) lateral reaction modulus for a single pile with diameter of d_p in metre; (3) shaft resistance from Unit 3A is provided for negative skin friction design of pile foundation. Shaft resistance from Unit 3A should not be considered as part of pile axial capacity. (4) Ultimate end bearing value requires a minimum pile embedment of 1.5 times pile diameter or 1.5 m depth in to the soil unit whichever is longer.

For cone pull-out failure calculation, the inverted cone can be calculated using the angle of pull-out of approximately 0.5 times the soil angle of friction.

For limit state design of piles, the design ultimate geotechnical pile capacity is derived by applying a geotechnical strength reduction factor (Φ g) to the ultimate geotechnical pile capacity assessed using the ultimate shaft resistance and end bearing values shown in Table 12. In accordance with AS2159- 2009, Φ g is dependent on an Average Risk Rating (ARR) which considers various geotechnical uncertainties, foundation system redundancy, construction supervision, quantity and type of pile testing. Based on the available information, we suggest Φ g of 0.45 could be adopted for pile design. For uplift loads a Φ g of 0.4 should be adopted and shaft adhesion values presented in Table 12 above should be multiplied by 0.7. The final Φ g should be reviewed by Coffey at the detailed design stage.

The use of limit state design also requires assessment of the serviceability performance of the foundation system. This should be carried out by an experienced geotechnical professional using well-established and soundly based methods. The elastic modulus value given in Table 12 may be adopted but it should be noted that the accuracy of settlement prediction is dependent on construction methods as well as material stiffness, both of which can involve degree of uncertainty.

6.5.2.2 Screw Piles

Screw piles may be a viable option for this school site. The use of steel screw piles, including multi-helix piles with optional head fin attachments for increased lateral support if needed, along with a pile cap, would be suitable for lightly loaded structures requiring minimal lateral resistance, as expected in this case. Steel screw pile capacity depends on the foundation's density, strength consistency, and depth. Designing steel screw piles with a helix diameter of 0.6 m and multi-helix can be accomplished using an allowable bearing pressure of 400 kPa when founded in stiff to very stiff clay (Unit 3B). It should be noted that a layer of firm clay (Unit 3A) was encountered below Unit 3B up to 6.3m thick, an allowable bearing pressure of 150 kPa could be adopted for Unit 3A. Where a relative lower bearing stratum (Unit 3A) underlies a stronger layer (Unit 3B), end bearing

shall be reduced linearly as the pile tip founded within the depth close to the lower bearing stratum as schematically illustrated in the in Figure 2.

Figure 2 – End Bearing Capacity of Pile socket in Stiff Clay (Unit 3B) Underlain by a Firm Clayey Layer (Unit 3A).

It is crucial to carefully control the installation of steel screw piles in the field to ensure they do not encounter refusal before reaching their termination depth, especially if refusing on dense gravels or rock. In such scenarios, the pile's advancement will cease, leading to over rotation and disturbance of the overburden soils above the helix. This issue often arises when steel screw piles encounter an underlying harder stratum, significantly reducing toe penetration compared to the string rotation, thereby substantially reducing the bearing capacity for the helix and possibly incurring pile movements.

The actual capacity of steel screw piles depends not only on soil conditions but also on structural considerations, such as the strength of the helix and the helix/shaft joint. Both the structural section capacity and geotechnical capacity should be taken into account, especially when the required load-carrying capacity of individual steel screw piles exceeds, say, 600 kN. Measurement of installation torque should not be solely relied upon to indicate pile capacity, as documented evidence shows significantly misleading results can be obtained. Therefore, piling contractors would be responsible for assessing the actual pile capacities for their piles.

It is essential to check the structural capacity of the steel screw pile and account for inclined or eccentric loads and possible corrosion effects.

To increase the lateral capacity of steel screw piles, concrete pile caps can be constructed, or proprietary head attachments can be used, which are dragged into the soil to provide additional lateral resistance at the pile head. However, it should be noted that the lateral support is generally limited and suitable for non-critical structures that can accommodate some lateral movement, such as light poles, signs, and small towers.

The ultimate geotechnical strength ($R_{d,ug}$) of steel screw piles in uplift can be calculated using the weight of the enclosing cylinder of soil above the helix, together with friction developed on the walls of this cylinder,

using an average buoyant soil density of 7 kN/m³ (assuming a high groundwater table in the worst case), while ignoring friction.

Regarding the compressive load testing of piles, (AS 2159, 2009) requires it to be undertaken to a test load of E_d/Φ_g . For a geotechnical strength reduction factor (Φ_g) of 0.45, this test load is twice the design action effect (Ed). However, the results of steel screw pile load tests typically indicate that plastic deformation of the helix can occur when a screw pile is loaded to only approximately 1.5 times E_d , especially for piles with a helix outstand to plate thickness ratio greater than about 10. Therefore, failure can occur before reaching the required test load for such piles.

Although the test load nominated by (AS 2159, 2009) is unlikely to be achieved for piles with insufficient helix plate thickness, failure would not be expected to occur at normal serviceability loads. To achieve the nominated test load, steel screw piles should be designed with a helix outstand to plate thickness ratio of no greater than about 10.

For proper understanding of subsurface conditions, it is imperative to provide a specialist screw piling contractor with a full copy of this report.

6.6 DESIGN CBR VALUES AND PAVEMENT DESIGN

It is expected that new pavement will be constructed at, or near existing ground surface level. Therefore, it is likely that the subgrade will be Clay.

The results of the CBR tests conducted on selected samples of subgrade material indicate CBR values between 5% and 11% for clay material. It is recommended that a CBR value of 5% be adopted for the clayey subgrade.

Pavements should be protected by adequate surface and subsoil drainage to reduce the risk of water ingress and subgrade softening. Pavement subgrade should be prepared in accordance with the site preparation requirements presented in Section 6.1.1.

Groundwater was observed at depths between 2.4m and 8m below the current ground surface levels during auger drilling of boreholes. As a result, there is no likelihood of permanent uplift forces acting on the conventional slab to be constructed at or near the ground surface. During the flood events, only buoyancy load arising from the submerged slab should be considered.

It is also understood that the lift pit will be more than 2m depth below the existing ground level and fully tanked. Therefore, permanent uplift pressure on the lift pit must be considered. The predicated uplift pressure is approximately 20 kPa when design groundwater level at RL 14m AHD is adopted.

6.7 ESTIMATE LONG-TERM MOVEMENT OF GROUND DUE TO GROUNDWATER VARITIONS.

Groundwater table at RL 13mAHD is recommended in the design. For long-term settlement calculations, the maximum groundwater table at RL 14m AHD has been considered to account for potential groundwater variations. The anticipated maximum long-term settlement of the ground is approximately 20mm for every 1m drop in the groundwater table.

6.8 SITE CLASSIFICATION

Additional soil classification testing has been conducted for clayey soil in boreholes BLA-C-BH1 to BLA-C-BH4 between 2.3m and 5.75m depth. Soil classification testing results are also available for the clayey soil within 1m depth as provided in Douglas Partners' investigation report (Ref: 216628.00.R.004.Rev0 dated 14 November 2022). The testing results are summarised in Table 13 together with the correlated approximate range of shrink swell index I_{ps} . Coffey recommended adopting a shrink well index of 3% - 4% for this site. The estimated characteristic ground surface movement is approximately 50mm – 100mm, which is corresponding with site Class H1 to E in accordance with AS 2870.

Geological Unit	Description	BH	Depth m	LL%	PL%	PI%	LS%	WPI%	Clay/Silt %	Correlated ⁽¹⁾ I _{ps} [%]
Unit 3B – Alluvium	Silty Clay (stiff)	BLA-C- BH1	2.3 – 2.75	91	43	48	12	-	-	4 – 5
Unit 3A – Alluvium	Silty Clay (firm)	BLA-C- BH2	3.8 – 4.25	61	32	29	12	-	-	2-3
Unit 3A – Alluvium	Silty Clay (firm)	BLA-C- BH3	5.3 – 5.75	11	41	21	11	-	-	0.5 – 1.5
Unit 3B – Alluvium	Clay (stiff)	BLA-C- BH4	2.3 - 2.75	70	39	31	13	-	-	2 – 3.5
Unit 3B – Alluvium	Clay (stiff to very stiff)	BH2	0.4	56	32	24	15.5	1992	37	1 – 4
Unit 4 – Residual	Clay (very stiff to hard)	BH4	1.0	74	39	35	17.5	2485	23	1 – 5

Notes: (1) approximate shrink swell index is correlated with the provided soil classification test results.

LL: Liquid Limit, PL: Plastic Limit, PI: Plasticity Index, LS: Linear Shrinkage, WPI: % passing 0.425mm sieve x PI.

6.9 EARTHQUAKE DESIGN

We recommend that a Hazard Factor (Z) of 0.09 and probability factor (Kp) of 1.5 would be appropriate for the proposed site in accordance with AS 1170.4-2007 Part 4 Earthquake Actions in Australia. The site be classified as Class Ce (Shallow soil site). Footing design shall be undertaken considering the potential shrink swell and seismic action in accordance with the relevant standards.

6.10 SOIL AGGRESSIVITY

The soil aggressivity test results were compared with the exposure classifications defined in Australian Standard AS2159-2009 Piling – "Design and Installation". The chemical test results indicate "**Non-Aggressive**" to "**Moderate-Aggressive**" ground conditions to buried concrete element and "**Non-Aggressive**" ground conditions to buried steel elements.

IMPORTANT INFORMATION ABOUT YOUR TETRA TECH COFFEY REPORT

As a client of Tetra Tech Coffey you should know that site subsurface conditions cause more construction problems than any other factor. These notes have been prepared by Tetra Tech Coffey to help you interpret and understand the limitations of your report.

Your report is based on project specific criteria

Your report has been developed on the basis of your unique project specific requirements as understood by Tetra Tech Coffey and applies only to the site investigated. Project criteria typically include the general nature of the project; its size and configuration; the location of any structures on the site; other site improvements; the presence of underground utilities; and the additional risk imposed by scope-of-service limitations imposed by the client. Your report should not be used if there are any changes to the project without first asking Tetra Tech Coffey to assess how factors that changed subsequent to the date of the report affect the report's recommendations. Tetra Tech Coffey cannot accept responsibility for problems that may occur due to changed factors if they are not consulted.

Subsurface conditions can change

Subsurface conditions are created by natural processes and the activity of man. For example, water levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Because a report is based on conditions which existed at the time of subsurface exploration, decisions should not be based on a report whose adequacy may have been affected by time. Consult Tetra Tech Coffey to be advised how time may have impacted on the project.

Interpretation of factual data

Site assessment identifies actual subsurface conditions only at those points where samples are taken and when they are taken. Data derived from literature and external data source review, sampling and subsequent laboratory testing are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact on the proposed development and recommended actions. Actual conditions may differ from those inferred to exist, because no professional, no matter how qualified, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions. For this reason, owners should retain the services of Tetra Tech Coffey through the development stage, to identify variances, conduct additional tests if required, and recommend solutions to problems encountered on site.

Your report will only give preliminary recommendations

Your report is based on the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until project implementation has commenced and therefore your report recommendations can only be regarded as preliminary. Only Tetra Tech Coffey, who prepared the report, is fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered as the project develops. If another party undertakes the implementation of the recommendations of this report there is a risk that the report will be misinterpreted and Tetra Tech Coffey cannot be held responsible for such misinterpretation.

Your report is prepared for specific purposes and persons

To avoid misuse of the information contained in your report it is recommended that you confer with Tetra Tech Coffey before passing your report on to another party who may not be familiar with the background and the purpose of the report. Your report should not be applied to any project other than that originally specified at the time the report was issued.

Interpretation by other design professionals

Costly problems can occur when other design professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, retain Tetra Tech Coffey to work with other project design professionals who are affected by the report. Have Tetra Tech Coffey explain the report implications to design professionals affected by them and then review plans and specifications produced to see how they incorporate the report findings.

Data should not be separated from the report

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way. Logs, figures, drawings, etc. are customarily included in our reports and are developed by scientists, engineers or geologists based on their interpretation of field logs (assembled by field personnel) and laboratory evaluation of field samples. These logs etc. should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

Geoenvironmental concerns are not at issue

Your report is not likely to relate any findings, conclusions, or recommendations about the potential for hazardous materials existing at the site unless specifically required to do so by the client. Specialist equipment, techniques, and personnel are used to perform a geoenvironmental assessment. Contamination can create major health, safety and environmental risks. If you have no information about the potential for your site to be contaminated or create an environmental hazard, you are advised to contact Tetra Tech Coffey for information relating to geoenvironmental issues.

Rely on Tetra Tech Coffey for additional assistance

Tetra Tech Coffey is familiar with a variety of techniques and approaches that can be used to help reduce risks for all parties to a project, from design to construction. It is common that not all approaches will be necessarily dealt with in your site assessment report due to concepts proposed at that time. As the project progresses through design towards construction, speak with Tetra Tech Coffey to develop alternative approaches to problems that may be of genuine benefit both in time and cost.

Responsibility

Reporting relies on interpretation of factual information based on judgement and opinion and has a level of uncertainty attached to it, which is far less exact than the design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded. To help prevent this problem, a number of clauses have been developed for use in contracts, reports and other documents. Responsibility clauses do not transfer appropriate liabilities from Tetra Tech Coffey to other parties but are included to identify where Tetra Tech Coffey's responsibilities begin and end. Their use is intended to help all parties involved to recognise their individual responsibilities. Read all documents from Tetra Tech Coffey closely and do not hesitate to ask any questions you may have.

APPENDIX A: BOREHOLE LOCAITON PLAN

LEGEND	drawn	IG		client:	ADCO Con	struction Pty Ltd
2022 Geotechnial boreholes by DP	approved	VN		project:	Northern Riv	ver School Cluster
2023 Geotechnical boreholes by Coffey	date	25/07/2023	TETRA TECH		Wardell Publi	c School - Option 3
	scale	NTC		title:	Borehole	Location Plan
2023 Environmental boreholes by Coffey	original size	A4		project no:	SYDGE319200	figure no: 1

LEGEND	drawn	IG		client:	ADCO Con	struction Pty Ltd
2022 Geotechnial boreholes by DP	approved	VN		project:	Northern Riv	er School Cluster
2023 Geotechnical boreholes by Coffey	date	25/07/2023	TETRA TECH		Wardell Public	c School - Option 4
	scale	NTC		title:	Borehole	Location Plan
U23 Environmental boreholes by Coffey	original size	A4		project no:	SYDGE319200	figure no: 2

LEGEND	drawn	IG		client: ADCO Construction P	ty Ltd
2022 Geotechnial boreholes by DP	approved	VN	_	project: Northern River School	Cluster
\bigoplus 2023 Geotechnical boreholes by Coffey	date	25/07/2023	TETRA TECH	Wardell Public School -	Option 5
	scale	NTC		title: Borehole Location I	Plan
U23 Environmental boreholes by Coffey	original size	A4		project no: SYDGE319200 figure no:	3

APPENDIX B: GEOTECHNICAL SECTIONS

7	<u>′0</u>	80	-
	· · · · ·		
	· · · · ·		
-???	<u>; , , , , , , , , , , , , , , , , , , ,</u>		
	· · · · · · ·		
- <u>;</u> ;	<u>, , , , , , , , , , , , , , , , , , , </u>	_??	
St			
_			
/St			
St			
	<u>; </u>	·	
	- 		
	· · · ·		
	· · · · ·		
	• • • • • •		
	;		
	۰.		J
UNIT 3C - AL	LUVIUM (SILTY SAND)/CLAYEY SAND: VL-L)	
UNIT 3D - AL	LUVIUM (SILTY SAND)/CLAYEY SAND: MD-D)	
UNIT 4 - RES	IDUAL SOIL (SANDY (CLAY - VST-H)	
lient:	ADCO Constr		
roject:	Northern River	School Cluster	
BLAKEBROOK PUBLIC SCHOOL - SECTION B-B'			
roject no:	SYDGE319200	fig no:	rev:

APPENDIX C: ENGINEERING BOREHOLE LOGS

SOIL DESCRIPTION EXPLANATION SHEET

DEFINITION:

In engineering terms soil includes every type of uncemented or partially cemented inorganic or organic material found in the ground. In practice, if the material can be remoulded or disaggregated by hand in its field condition or in water it is described as a soil. Other materials are described using rock description terms.

CLASSIFICATION SYMBOL & SOIL NAME

Soils are described in accordance with AS 1726:2017 as shown in the table on Sheet 2. PARTICLE SIZE DEFINITIONS

Components	Subdivision

Components	Subdivision	Size (mm)
Boulders Cobbles		>200 63 - 200
Gravel	Coarse Medium Fine	19 - 63 6.7 - 19 2.36 - 6.7
Sand	Coarse Medium Fine	0.6 - 2.36 0.210 - 0.6 0.075 - 0.21
Silt Clay		0.002 - 0.075 < 0.002

MOISTURE CONDITION

Coarse Grained Soil

Dry (D)	Non-cohesive and free-running
Moist (M)	Soil feels cool, darked in colour. Soil tends to stick together.
Wet (W)	As for moist, with free water forming when handled.
Fine Grained Soil	

Moist, dry of plastic limit (w <w<sub>P)</w<sub>	Hard and friable or powdery
Moist, near plastic limit (w≈W _P)	Can be moulded at a moisture content approximately equal to the plastic limit.
Moist, wet of plastic limit (w>W _P)	Soils usually weakened and free water forms on hands when handling.
Wet, near liquid limit (w≈W∟)	Near liquid limit.
Wet, wet of liquid limit (w>WL)	Wet of liquid limit.

CONSISTENCY OF COHESIVE SOILS

Term (Abbreviation)	Indicative undrained shear strength s _u (kPa)	Field guide
Very Soft (VS)	<12	Soil exudes between fingers when squeezed in hand.
Soft (S)	12 - 25	Soil can be moulded by light finger pressure.
Firm (F)	25 - 50	Soil can be moulded by strong finger pressure.
Stiff (St)	50 - 100	Soil cannot be moulded by fingers.
Very Stiff (VSt)	100 - 200	Soil can be indented by thumb nail.
Hard (H)	>200	Soil can be indented with difficulty by thumb nail.
Friable (Fb)	-	Soil can be easily crumbled or broken into small pieces by hand.

RELATIVE DENSITY OF NON-COHESIVE SOILS

Term (Abbreviation)	Density index (%)
Very Loose (VL)	Less than 15
Loose (L)	15 - 35
Medium Dense (MD)	35 - 65
Dense (D)	65 - 85
Very Dense (VD)	Greater than 85

MINOR COMPONENTS

Term	Assessment Guide	Proportion of minor component in:
Trace	Presence just detectable by feel or eye, but soil properties little or no different to general properties of primary component.	Coarse grained soils: Fines - <5%, Accessory coarse fraction - <15% Fine grained soils: sand/gravel <15%
With	Presence easily detected by feel or eye, soil properties little different to general properties of primary component.	Coarse grained soils: Fines - 5 to 12%, Accessory coarse fraction – 15 to 30% Fine grained soils: sand/gravel 15 to 30%

SOIL STRUCTURE AND CEMENTATION

	Zoning	C	ementation
Layer	Zone is continuous across exposure or sample.	Weakly cemented	Easily disaggregated by hand in air or water.
Lense	Discontinuous layer of different material, with lenticular shape.	Moderately cemented	Effort is required to disaggregate the soil by hand in air or water.
Pocket	Irregular inclusion of different material.		

GEOLOGICAL ORIGIN

Residual soil	Structure and fabric of parent rock not visible.
Extremely weathered material	Structure and/or fabric of parent rock is visible.
Alluvial soil	Deposited by streams and rivers.
Estuarine soil	Deposited in coastal estuaries, including sediments carried by inflowing rivers and streams, or tidal currents.
Marine soil	Deposited in a marine environment
Lacustrine soil	Deposited in freshwater lakes
Aeolian soil	Carried and deposited by wind
Colluvial soil	Deposited on slopes (transported downslope by gravity, with or without assistance of water).
Topsoil	Mantle of surface or near surface material, often defined by high levels of organic material.
Fill	Any material which has been placed by anthropogenic processes. Fill may be significantly more variable between tested locations than naturally occurring soils.

SOIL CLASSIFICATION INCLUDING IDENTIFICATION AND DESCRIPTION

			(Exclu	uding	FIELD IDE particles larger tha	NTIFICAT n 63 mm a	ION PROCEDURES nd basing fractions on estimated	d mass)	GROUP SYMBOL	SOIL NAME
	⁷ 5 mm			action	c	AN VEL iless 5%)	Wide rang particle si	ge in grain size and substantial a zes, not enough fines to bind co	amounts of all intermediate arse grains, no dry strength.	GW	GRAVEL
	- than 0.0	e)	VEL	coarse fr	n 2.36 mn	CLE GRA (Fines than	Predomin sizes miss	antly one size or a range of size sing, not enough fines to bind co	es with some intermediate barse grains, no dry strength.	GP	GRAVEL
SOIL	m is largeı	naked ey	GRA	han half of	larger tha	VEL INES greater 12%)	'Dirty' mai procedure	erials with excess of non-plastic es see ML below).	c fines (for identification	GM	Silty GRAVEL
RAINED	han 63 mi	e to the r		More th	<u>.</u> 2	GRA with F (Fines (than t	'Dirty' mai procedure	terials with excess of plastic fine as see CL below).	es (for identification	GC	Clayey GRAVEL
ARSE GF	rials less t	cle visible		arse	12.36	:AN ND s less 5%)	Wide rang sizes, not	ge in grain sizes and substantial enough fines to bind coarse gra	amounts of all intermediate ains, no dry strength.	SW	SAND
COL	% of mate	est parti	AND	half of coa	naller thar	CLE SAI (Fine: than	Predomin sizes miss	antly one size or a range of size sing, not enough fines to bind co	es with some intermediate parse grains, no dry strength.	SP	SAND
	e than 65	he small	S	lore than	ction is sn	NND vith VES vites aater aan aan	'Dirty' mai	erials with excess of non-plastic es see ML below).	fines (for identification	SM	Silty SAND
	More	bout tl		≥	frac	Ύ, Έ, β [≠] 6	'Dirty' mar procedure	erials with excess of plastic fine as see CL below).	s (for identification	SC	Clayey SAND
	63	e is a				IDEN	ITIFICATIO	ON PROCEDURES ON FRACT	IONS <0.2 mm		
	than	rticl			ŝ	DRY STREN	GTH	DILATANCY	TOUGHNESS		
SOIL	less)75 n	n pe	ø	≻	nit les	None to lo	w	Slow to rapid	Low	ML	SILT
Ē	terial an 0.0	5 mr	SILT	CLA	uid lin	Medium to h	nigh	None to slow	Medium	CL, CI	CLAY
RAIN	of ma	0.07			Liqu	Low to med	ium	Slow	Low	OL	Organic SILT
E G	1 35% s sma	(A			it	Low to med	ium	None to slow	Low to medium	MH	SILT
Ē	e thar mm i		ILT 8	ĽΑΥ	uid lin	High to very	high	None	High	СН	CLAY
	Mor		S	0	Liq	Medium to h	nigh	None to very slow	Low to medium	ОН	Organic CLAY
HIGH	ILY OR	GAN	IC S	DILS		Readily identi	ied by cold	our, odour, spongy feel and frequ	uently by fibrous texture.	PT	Peat
•	Low pl	astici	ty – L	iquic	d Lim	it W∟less than 35%	. • Medi	um plasticity –W⊾ between 35%	and 50%. • High plasticity -	·W _L greater th	an 50%.

COMMON DEFECTS IN SOIL

TERM	DEFINITION	DIAGRAM]	TERM	DEFINITION	DIAGRAM
Parting	A surface or crack across which the soil has little or no tensile strength. Parallel or sub parallel to layering (e g. bedding). May be open or closed.			Softened Zone	A zone in clayey soil, usually adjacent to a defect in which the soil has a higher moisture content than elsewhere	ALL DE COLOMBIA
Fissure	A surface or crack across which the soil has little or no tensile strength but which is not parallel or sub parallel to layering. May be open or closed. May include desiccation cracks.			Tube	Tubular cavity. May occur singly or as one of a large number of separate or interconnected tubes. Walls often coated with clay or strengthened by denser packing of grains. May contain organic matter. Origins include root holes, animal burrows, tunnel erosion.	
Sheared Seam	Zone in clayey soil with roughly parallel near planar, curved or undulating boundaries containing closely spaced, smooth or slickensided, curved intersecting joints which divide the mass into lenticular or wedge shaped blocks.	Ø		Tube cast	An infilled tube. The infill may be uncemented or weakly cemented soil or have rock properties.	
Sheared Surface	A near planar curved or undulating, smooth, polished or slickensided surface in clayey soil. The polished or slickensided surface indicates that movement (in many cases very little) has occurred along the defect			Infilled Seam	Sheet or wall like body of soil substance or mass with roughly planar to irregular near parallel boundaries which cuts through a soil mass. Formed by infilling of open defects.	

			-						Borel	nole ID.	BLA-C-BH1
Enai	n 0	orin	~ I	~	~ [Dor	abala		sheet	t:	1 of 2
Engi	ne	enn	y ı	-0(y - 1		enoie		proje	ct no.	SYDGE319200
client:	AD	CO Cor	nstr	uctio	on Pty	' Ltd			date	started:	07 Jul 2023
principal:	NS	W Depa	artm	ent	of Edu	ucatio	n		date	complete	d: 07 Jul 2023
project:	No	rthern H	Rive	r Sc	hool (Cluste	er		logge	ed by:	WS
location [.]	Bla	kebroo	k Pi	ublic	: Scho	ool			check	ked by:	VN
position: F	52247	′4· N· 6818	215 (N	/GA94	.)		surface elevation: 15.28 m (AHD)	angle	from he	orizontal: 9	90°
drill model: (GOT20	08, Truck	moun	ted	/		drilling fluid: N/A	hole	diamete	r : 100 mm	
drilling info	ormati	on			mater	ial subst	tance			1	
method & support penetration	water	samples & field tests	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle characteristics, colour, secondary and minor components	moisture condition	consistency / relative density	hand penetro- meter (kPa) 8 8 8 8	soil origin, structure and additional observations
							TOPSOIL: CLAY: medium plasticity, dark brown,	/ <wp< th=""><th>St</th><th>- 0.04</th><th></th></wp<>	St	- 0.04	
		SPT 2, 4, 5 N=9	-15	- - - 1.0-			Trace rootlets, trace wood strips. CLAY : medium plasticity, red brown, trace gravels, fine to medium grained, sub-angular.	1			ALLUVIUM HP <170 kPa
		SPT 3, 6, 7 N=13	-13	2.0- - - - - - - - - - - - - - - - - - -		CL-CI	Silty CLAY: medium to high plasticity, red brown, pale grey, trace fine to coarse grained sand, trace clayey gravels, fine to coarse grained.				HP <280 kPa
AD	Not Encountered	SPT 3, 5, 6 N=11		4.0-		CL-CI	Silty CLAY: medium to high plasticity, pale brown, with white clayey gravels, fine to coarse grained.	_	F	X	HP <140 kPa
		SPT 2, 2, 6 N=8	-10	5.0- - - - 6.0-						× · · · · · · · · · · · · · · · · · · ·	HP <80 kPa
		SPT 8, 14, 28 N=42	-9 8	7.0-		CL-CI	CLAY: medium to high plasticity, dark brown, with clayey gravels, yellow white.		Н		RESIDUAL SOIL HP <120 kPa
method DT diatub AD auger AS auger HA hand i W washt RR rock re * bit shc e.g. AD/T B blank T TC bit	e drilling screwi auger oore oller own by bit	, ng* suffix	sup M I C Q pen wat	port mud casing etration er er ∎ lev wai ua	N no resist ranging refusal Oct-12 wate el on date s ter inflow ter outflow	nil tance to er shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	soil gro material based on oisture co dry moist wet p plastic l l liquid lir	up symbol I descript AS 1726 ndition imit nit	ol & tion :2017	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

CDF_0_10_00.4_LIBRARY (1).GLB rev:CDF_0_10_00.4 2021-09-30 Log COF BOREHOLE: NON CORED NRSC_COMB.GPJ <<DrawingFile>> 28/07/2023 10:46

				-	1						Boreh	nole ID.	BLA-C-BH1
E	nai	no	orin	a I	0	ч_	Ro	reholo			sheet	:	2 of 2
	iyi			y ı	-0(J -	DU	Tenole			projec	ct no.	SYDGE319200
clier	nt:	AD	CO Cor	nstri	uctio	n Pt	y Ltd	1			date s	started:	l: 07 Jul 2023
prine	cipal:	NS	W Depa	artm	ent	of Ec	lucat	ion			date o	complet	eted: 07 Jul 2023
proje	ect:	No	rthern H	Rive	r Sc	hool	Clus	ter			logge	d by:	WS
loca	tion:	Bla	kebroo	k Pi	ublic	Sch	lool				check	ed by:	VN
posit	ion: E:	52247	74; N: 6818	215 (N	/IGA94)		surface elevation: 15.28 m (AHD)	a	ngle 1	rom ho	orizontal:	l: 90°
drill n	nodel: (GOT2	008, Truck	moun	ted			drilling fluid: N/A	h	ole di	ameter	: 100 m	nm
drill	ing info	ormati	ion			mate	erial sub	bstance			ţ	bond	
method & support	1 2 penetratio 3	water	samples & field tests	RL (m)	depth (m)	graphic log	soil group symbol	SOIL NAME: plasticity or particle characteristics, colour, secondary and minor components	moisture	condition	consistency / relative densi	penetro- meter (kPa)	Soil origin, structure and additional observations
- db				_	-		CL-CI		<	Wp	Н		RESIDUAL SOIL
				-	9.0-			Borehole BLA-C-BH1 terminated at 8.30 m Refusal					-
				-6	- - - 10.0—								
				-5	- - - 11.0-								
1				-4	-								- - - -
				-3	12.0— - -								-
				-2	13.0 — - -								
				-1	14.0 — - -								- - - - -
1				-0									
meti DT AD AS HA W RR * e.g. B T V	hod diatub auger auger hand a washb rock roc bit sho AD/T blank I TC bit	e drilling screwi auger oore oller own by bit	* ng* suffix	sup M C pen wat	port mud casing etration er er ↓ 10- uvat ↓ 10- wat	N no res rangin refusa Oct-12 wa el on date er inflow er outflov	sistance og to al ater e shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	soil mat baser moistur D dry M mc W we Wp pla WI liqu	d on A d on A e con bist t astic lin uid limi	o symbo lescript S 1726: dition dition	ion 2017	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose D dense VD very dense

CDF_0_10_00.4_LIBRARY (1).GLB rev:CDF_0_10_00.4 2021-09-30 Log_COF BOREHOLE: NON CORED_NRSC_COMB.GPJ <<DrawingFile>> 28/07/2023 10:46

	_									Boreh	hole	ID.		BLA-	·C-BH2	
Fn	ai	n۵	orin	а I		a -	Ro	rehole		sheet	t:			1 of 2		
	y			<u>y</u>	LUį	<u>y</u> -		lenole		proje	ct n	Э.		SYDG	E319200	
client	-	AD	CO Col	nstr	uctio	on Pt	y Lto			date s	star	ted:		10 Jul	2023	
princi	pal:	NS	W Depa	artm	ent	of Ec	ducat	ion		date o	com	plet	ed:	10 Jul	2023	
projec	ct:	No	rthern l	Rive	er Sc	hool	Clus	ter		logge	ed b	y:		WS		
locatio	on:	Bla	kebroo	ok P	ublic	: Sch	lool			check	ked	by:		VN		
positio	n: E:	52243	88; N: 6818	205 (N	MGA94)		surface elevation: 15.23 m (AHD)	angle	from ho	orizo	ntal:	90°			
drill mo	odel: C	OT20	008, Truck	moun	ted	mat		drilling fluid: N/A	hole d	liametei	r : 10)0 mr	n			
ariiin		mati	on			mate	eriai su	material description		ity	h	and				
metnou & support	2 penetratio	water	samples & field tests	RL (m)	depth (m)	graphic log	soil group symbol	SOIL NAME: plasticity or particle characteristics, colour, secondary and minor components	moisture condition	consistency relative dens	per m (k	eter Pa)		soil origin addition	n, structure and al observations	
				-15				TOPSOIL: CLAY: low to medium plasticity, dark	<wp< td=""><td></td><td></td><td></td><td>TOP</td><td>SOIL</td><td></td><td></td></wp<>				TOP	SOIL		
						\mathbb{V}/\mathbb{V}	CL	grained.		St	İİ	ÌÌ	ALL	UVIUM		
0000000				_				CLAT. medium plasticity, red brown.			lii					
			SPT 3, 5, 6		1.0-	V///						*¦	HP <	<300 kPa		
			N=11	-14	.	<i>\///</i>										
0000000						¥///										
0000000				F		¥///	CL	CLAY: medium plasticity, red brown, mottled grey and								
0000000					2.0-	<i>\///</i>		yellow.								
0000000			SPT	-13		¥///							 HP <	<320 kPa		
0000000			3, 5, 7 N=12		.	¥///								,, u u		
0000000				ł		<i>V///</i>										
0000000				-12	3.0-	V///										
					.	<i>\///</i>										
0000000					.	<i>\///</i>										
			SPT	1	4.0-	¥///		3.8 m: becoming mottled grey		F		× 	HP <	<250 kPa		
0000000			N=8	-11		<i>\///</i>										
0000000		10/07/2			·	<i>V///</i>										
0000000				-		<i>\///</i>										
0000000					5.0-	¥X/	CI	SIRY CLAY: high plasticity, dark brown, mottled white yellow, trace clayey gravels, white yellow, fine								
2000000			<u>ерт</u>	-10				to coarse grained, sub-angular.			X		HP -	=60 kPa		
0000000			2, 2, 3 N=5			VX/							`````````````````````````````````````	00 M a		
				Ť		VXI.										
000000				_0	6.0-											
0000000				9		V										
0000000					.	¥X/										
00000000			SPT	1	7.0-			6.8 m: trace clayey gravels, white					HP <	≔50 kPa		
0000000			N=4	-8												
000000					.											
0000000				-												
netho T D S	diatube auger	drilling screwi	* na*	sup M C	port mud casing	<u>V/X//</u>	1 I nil	samples & field tests B bulk disturbed sample D disturbed sample b E environmental sample	soil grou material ased on A	ip symbo descript AS 1726:	ol & tion :2017	, , ,	CC VS S	o nsistency / S	/ relative density very soft soft firm	
IA V	hand a washb	uger ore	.а	pen	etration	n		S split spoon sample		ali41				: St	stiff	
R	rock ro	ller			-	no re rangir refus	sistance ng to al	O## unissurbed sample ##mm diameter mois HP hand penetrometer (kPa) D N standard penetration test (SPT) M	dry moist	ndition				э.)	hard friable	
a	bit sho	wn by	suffix	wat	er 10-	-Oct-12 w	ater	N* SPT sample recovered W Nc SPT with solid cone Wp	wet plastic li	mit				_	very loose loose	
.y. } -	blank b	oit			wa	ter inflow	- SHOWII	VS vane shear; peak/remouded (kPa) WI R refusal	liquid lim	nit			M D	D	medium dense dense	
,	V bit			-	- wa	ter outflo	N	HB hammer bouncing					V	D	very dense	

										E	Boreh	nole	e ID.		BLA-C-BH2	
En	ai	20	orin	a		N _	R۸	rabala		s	sheet	:			2 of 2	
	ıyıı	IE	enn	<u>y</u>	-0(y -	DU	Tenole		p	orojec	ct n	0.		SYDGE319200	
client	•	AD	CO Co	nstr	uctic	on Pt	y Lta	1		c	date s	star	ted		10 Jul 2023	
princi	pal:	NS	W Depa	artn	ent	of Ea	lucat	ion		c	date o	con	nple	ted	: 10 Jul 2023	
projec	ct:	No	rthern	Rive	r Sc	hool	Clus	ter		l	ogge	d b	y:		WS	
locati	on:	Bla	kebroo	ok P	ublic	: Sch	ool			c	check	ed	by:		VN	
positio	n: E:5	52243	38; N: 6818	205 (1	/IGA94)		surface elevation: 15.23 m (AHD)	an	gle fr	om ho	orizo	ontal:	90	٥	-
drill mo	odel: G	OT20	008, Truck	moun	ted			drilling fluid: N/A	ho	le dia	ameter	:: 1	00 m	m		
drillin	ng info	rmati	on			mate	rial sul	ostance			Y					
ethod & Ipport	penetratior	ater	samples & field tests	(m)	spth (m)	aphic log	ail group mbol	material description SOIL NAME: plasticity or particle characteristics, colour, secondary and minor components	oisture	ndition	nsistency / ative densit	h pei m (l	netro neter heter kPa)	-	soil origin, structure and additional observations	
Ēß	- <u>~ ~</u>	Ň		R	q	- Б	S S		ž <v< td=""><td>8 /n</td><td>ଃ ହ F</td><td>100</td><td>8 8 8</td><td></td><td></td><td></td></v<>	8 /n	ଃ ହ F	100	8 8 8			
			SPT 4, 13, 15 N=28	7 	- - - 9.0 - - -		- <u>-</u>	Silty CLAY: high plasticity, grey and pale grey, trace clayey gravels, fine to coarse grained, sub-angular.		- 4	VSt				ΙΕΕΟ ΥΙΟΙΝ Ι ΕΒΙΟUAL SOIL ΙΡ <330 kPa	
				-5	10.0			Borehole BLA-C-BH2 terminated at 9.80 m Refusal				·				
				-4	- 11.0 — - -	-										
				-3	- 12.0 — - -	-						·				
				-2	- 13.0 — - -	-										
				-1	- 14.0 — - -	-										
				-0	- 15.0 — - - -	-										
metho DT AD AS HA W RR * e.g. B T	d diatube auger d auger s hand au washbc rock rol bit shov AD/T blank b TC bit	rilling crewi uger re ler vn by it	∗ ng* suffix	Sur M C per wat	er	N no res rangin refusa Oct-12 wa el on date ter inflow ter outflow	nil iistance ig to il ater a shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shear, peak/remouded (kPa) R refusal HB hammer bouncing	soil g mate based moisture D dry M mois W wet Wp plas WI liqui	rial de on AS condi st tic limit	symbo escripti 3 1726: lition	bl & ion 2017	7		consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense	

	_										Borel	hole IE).	BLA-C-BH3	
	C r	nai	no	orin	а I		2	Ro	rabala		shee	t:		1 of 2	
_		iyi	ne	enn	y ı	-0	J -	DU	Tenole		proje	ct no.		SYDGE319200	
(clien	t:	AD	CO Coi	nstr	uctio	on Pt	ty Ltd			date	starteo	4:	10 Jul 2023	
I	princ	ipal:	NS	W Depa	artm	ent	of Ec	ducat	ion		date	compl	eted:	10 Jul 2023	
1	proje	ect:	No	rthern I	Rive	r Sc	hool	Clus	ter		logge	ed by:		WS	
1	locat	ion:	Bla	kebroo	k Pi	ublic	: Sch	lool			chec	ked by	:	VN	
Г	positio	on: E:	52244	3; N: 6818	181 (N	/IGA94)		surface elevation: 14.85 m (AHD)	angle	from h	orizonta	l: 90°		
	drill m	odel: G	GOT20	08, Truck	moun	ted	,		drilling fluid: N/A	hole o	diamete	r : 100 i	nm		
F	drilli	ng info	ormati	on			mate	erial sub	stance						
	nethod & support	penetration	vater	samples & field tests	3L (m)	depth (m)	jraphic log	soil group symbol	material description SOIL NAME: plasticity or particle characteristics, colour, secondary and minor components	noisture	consistency / elative density	hanc penetr mete (kPa)	0- r	soil origin, structure and additional observations	
ŀ	<u> </u>	3 6 7				0		×	FILL: CLAY: low plasticity, dark brown, with rock	<wp< th=""><th>01</th><th>3 8 9</th><th>FILI</th><th>L</th><th>-</th></wp<>	01	3 8 9	FILI	L	-
l					-			×	boulders up to 120mm diameter.						-
l															-
l					-14	-									-
l						1.0-							<u> </u>		
					-	-	$\langle / / /$	CL-CI	CLAY: medium to high plasticity, red brown.		St			LUVIUM	-
						-	$\langle / / /$								-
					-13	2.0-	V///								-
						.	V///								-
				SPT 3, 5, 6		-							HP	<300 kPa	-
,				N=11	-12		$\mathbb{V}//\mathbb{V}$								-
					.2	3.0-	$\langle / / /$								-
					_	-	V///	CL-CI	CLAY: medium to high plasticity, red brown, mottled		F		į į		-
							V///		coarse grained, yellow white.						-
				SPT	-11	.	$\langle / / /$					X	 HP	<150 kPa	-
i	- AU			2, 3, 3 N=6		4.0-									-
					-	.	¥///						i I		-
						.		CL-CI	Silty CLAY: medium to high plasticity, red brown,						-
, , , ,					-10	50-			mottled grey, trace coal.						-
															-
				SPT	-	.						N i i	HP	<60 kPa	_
				N=4											-
					-9	6.0-									-
						.									-
															-
				0.07	-8	-						×		<50 kPa	-
				SP1 1, 2, 3 N=5		7.0-									-
					-										-
						.									-
ĺ					-7	.							į I		-
ſ	meth DT	od diatube	≝ e		sup M	port		l nil	samples & field tests	soil grou	up symb	ol &	C	consistency / relative density	
	AD AS	auger auger	drilling' screwir	* ng*	Co	casing	N	• •••	D disturbed sample t E environmental sample	based on a	AS 1726	:2017	S F	S soft firm	
	HA W	hand a washb	auger ore		pen	etratior - ∾ ∞	1 7- no rev	sistance	SS split spoon sample U## undisturbed sample ##mm diameter	isture co	ndition			St stiff /St very stiff	
	RR	rock ro	oller				rangir refus	ng to al	HP hand penetrometer (kPa) D N standard penetration test (SPT) M	dry moist			F	hard b friable	
	* e.a	bit sho AD/T	wn by	suffix	wat	er ▼ 10- Iev	Oct-12 w el on date	ater e shown	N* SPT - sample recovered W Nc SPT with solid cone Wp	wet plastic li	imit		L L	/L very loose loose	
	B T	blank t TC bit	bit			wat	ter inflow	w	VS vane shear; peak/remouded (kPa) WI R refusal	iiquia iin	rnt			MD medium dense D dense	
1	V	V bit				۳. I			no nammer bounding				¥	very dense	

CDF_0_10_004_LIBRARY (1).GLB rev:CDF_0_10_004 2021-09-30_Log_COF BOREHOLE: NON CORED_NRSC_COMB.GPJ <<DrawingFile>> 28/07/2023 10:46

			COI		1					E	Boreł	nole I	ID.	BLA-C-BH3
Er	nai	nc	orir			a -	Bo	rehole		5	sheet	t:		2 of 2
	iyi	110		iy	LU	<u>y -</u>	50	lenole		F	oroje	ct no	•	SYDGE319200
clien	t:	AĽ	0CO Co	onsti	ructio	on Pt	ty Ltd			(date	starte	ed:	10 Jul 2023
princ	ipal:	NS	W Dep	artn	nent	of Ed	ducat	ion		(date	comp	olete	d: 10 Jul 2023
proje	ect:	No	rthern	Riv	er Sc	hool	Clus	ter		I	ogge	d by:	:	WS
ocat	ion:	Bla	akebro	ok F	Public	: Sch	lool			C	checł	ked b	y:	VN
positio	on: E:	5224	43; N: 681	8181 ((MGA94	+)		surface elevation: 14.85 m (AHD)	a	angle fr	om ho	orizont	tal: 9	0°
drill m	odel: (GOT2	008, Truc	k moui	nted		<u> </u>	drilling fluid: N/A	ł	nole dia	amete	r:100) mm	
drilli	ng inte	ormat	ion			mate	erial sul	stance material description			ī ţ	har	bd	
metnoa & support	1 2 penetratio	water	samples & field tests	RL (m)	depth (m)	graphic log	soil group symbol	SOIL NAME: plasticity or particle characteristics, colour, secondary and minor components	moieture	condition	consistency relative dens	pene met (kP	etro- ter a)	soil origin, structure and additional observations
		07/23					CL-CI	Silty CLAY: medium to high plasticity, red brown, mottled grey, trace coal, (continued)	<	Wp	F			ALLUVIUM
		10/0	SPT	_								Ϋ́́	i i	HP <80 kPa
			N=5	_										
				-6	9.0-									
						V///	CL-CI	CLAY: medium to high plasticity, red brown, grey mottled, trace extremely weathered rock, trace coa	- — al.		VSt			RESIDUAL SOIL
			SPT	-5		\mathbb{V}/\mathbb{V}						X		HP <160 kPa
			6, 8, 13 N=21		10.0-	V///								
				-		$\mathbb{V}//\mathbb{V}$							i i l	
						\mathbb{V}/\mathbb{V}								
				-4	11 0									
						-		Borehole BLA-C-BH3 terminated at 11.0 m Refusal						
				-		1								
				-3								Li i	i i l	
				Ű	12.0-	1								
				-		1								
						-								
				-2		1								
					13.0-	1							i i l	
				-		-						Li i	i i l	
				-1	14.0-									
						1								
						1								
				-0		-						Li i		
					15.0 -	1								
				-		1								
						-								
				1										
neth)T \D \S - A N R	od diatub auger auger hand a washb rock re	e drilling screw auger oore oller	j* ing*	su M C pe	mud casing netration ► ♥ ♥	n n rangii	I nil sistance ng to al	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample S split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetrometer (kPa)	soi ma base moistur D dr	I group iterial de ed on AS re cond	symbo escript 3 1726: lition	ol & tion :2017		consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Eb firship
*	bit sho	own by	suffix	wa	ater 	-Oct-12 w	ater	N standard peretration test (SPT) N* SPT - sample recovered Nc SPT with solid cone	W we Wp pla	astic limi	it			VL very loose
∍.g. B	AD/T blank	bit			lev wa	vel on dat iter inflow	e shown	VS vane shear; peak/remouded (kPa) R refusal	Wiliq	uid limit				MD medium dense D dense
ı V	IC bit V bit			·	- wa	ter outflo	w	HB hammer bouncing						VD very dense

										Borel	hole	e ID).	BLA-C-BH4
Ena	ir	סו	orin	a I		a -	Ro	rehole		sheet	t:			1 of 2
Ling	<u>, , , , , , , , , , , , , , , , , , , </u>			<u>y</u>	LU	<u>y -</u>		Tenole		proje	ct n	10.		SYDGE319200
client:	4	AD	CO Col	nstr	uctio	on Pt	y Lta			date	stai	rted	1:	07 Jul 2023
orincipal	I: /	NSI	N Depa	artm	nent	of Ec	lucat	ion		date	con	nple	ete	ed: 07 Jul 2023
project:		Nor	thern l	Rive	er Sc	hool	Clus	ter		logge	ed b	by:		WS
ocation:	: .	Bla	kebroo	ok P	ublic	c Sch	lool			checl	ked	by	:	VN
osition:	E: 5	2249	2; N: 6818	195 (1	MGA94	1)		surface elevation: 14.59 m (AHD)	angle	from ho	orizo	onta	1: 9	90°
rill mode	l: GC	DT20	08, Truck	moun	ted	mate	rial sul	drilling fluid: N/A	hole d	iamete	r : 1	00 r	nm	1
	5							material description		sity	ŀ	nand	1	
support 1 2 penetrat	2 pereuau 3	water	samples & field tests	RL (m)	depth (m)	graphic lo	soil group symbol	SOIL NAME: plasticity or particle characteristics, colour, secondary and minor components	moisture condition	consistency relative den	001 01 be	netro neter (kPa)	400 r	soil origin, structure and additional observations
				-				TOPSOIL: CLAY : medium plasticity, dark brown, r trace rootlets, trace gravels, fine grained, //	<wp< td=""><td>St</td><td></td><td></td><td></td><td></td></wp<>	St				
						\mathbb{V}		sub-angular.						ALLOVION
				-14		¥///					Ì		i i x	<
			SPT 5, 7, 10		1.0-	\mathbb{V}					ļ.	İİ.	i	HP <500 kPa
		ŀ	N=17	_	·	¥///							;	
				-13		¥////								
						¥///								
				-	2.0-	¥///	ci –	CLAY: high plasticity, red brown with yellow						
			SPT	_		$\mathbb{V}//\mathbb{V}$		grained.			ļ	Ϋ́	i	HP <230 kPa
			4, 4, 6 N=10	-12		$\mathbb{V}//$					ļ.	ļļ.	i	
					3.0-	$\mathbb{V}//$								
				-		$\mathbb{V}//\mathbb{V}$								
				-11		¥///	CI	CLAY : medium to high plasticity, brown pale grey, trace silt.		F				
			0.07			¥///					×			
			2, 2, 3 N=5	_	4.0-	\mathbb{V}					ļ	ii.	i	TIF JU KFa
			-	_		$\mathbb{V}//$					ļ	ii.	i	
		7/07/23		-10		$\mathbb{V}//\mathbb{V}$					ļ		i	
		0			50-	¥////	CL	CLAY: high plasticity, red brown, trace coal.						
				ŀ	0.0	¥///								
			SPT 2, 1, 3		.	¥///					$\hat{1}$		$\left \right $	HP 50 kPa
			N=4	-9		¥///							i	
					6.0-	¥///		CLAY: high plasticity, red brown, pale brown.		St			;	
						¥///		С., у,, рас 2.2						
				-8		¥///								
		ŀ	SPT	-	·	<i>\///</i>							$\left \right $	HP <150 kPa
			5, 3, 7 N=10	-	7.0-	¥///							il	
				1	.	¥////							;	
				-7	.	¥///								
						<i>V////</i>	1							1
athod	tube	illina*		sup M	mud	N	l nil	samples & field tests B bulk disturbed sample	soil grou material	p symb descrip	ol & tion			Consistency / relative density
3 aug 3 aug A han	ger or ger so nd au	rewin rewin	g*	С реп	casing netration	n		D disturbed sample b E environmental sample	ased on A	AS 1726	:201	7		S soft F firm St stiff
was R rocl	shboi k rolle	e er				no res ranoir	sistance ng to	U## undisturbed sample ##mm diameter moi HP hand penetrometer (kPa)	sture con	dition				VSt very stiff H hard
hit	show	n by c	uffix	wat	ter		al	N standard penetration test (SPT) M N* SPT - sample recovered W	moist wet					Fb friable VL very loose
.g. AD/ blai	/T nk bit	i by S				el on date	e shown	Nc SPT with solid cone Wp VS vane shear; peak/remouded (kPa) WI	plastic lir liquid lim	nit iit				L loose MD medium dense
TC	bit			-		ater outflow	N	R refusal HB hammer bouncing						D dense VD very dense

	_				1						Boreł	nole II	D.	BLA-C-BH4	
Fr	nai	no	orin	u I	0	- r	R٥	rehole			sheet			2 of 2	
	igi			<u>y 1</u>		<u>y -</u>					proje	ct no.		SYDGE319200	
clien	t:	AD	CO Col	nstri	uctic	on Pt	y Lta	1			date s	starte	d:	07 Jul 2023	
princ	ipal:	NS	W Depa	artm	ent	of Ec	lucat	tion			date o	compl	eted:	07 Jul 2023	
proje	ct:	No	rthern l	Rive	r Sc	hool	Clus	ster			logge	d by:		WS	
locat	ion:	Bla	kebroo	ok Pi	ublic	: Sch	ool				checł	ked by	/:	VN	
positio	on: E:	52249	92; N: 6818	195 (N	/IGA94)		surface elevation: 14.59 m (AHD)	ar	ngle f	rom ho	orizonta	al: 90°		
drill m	odel: (GOT2	008, Truck	moun	ted	mate	rial sul	drilling fluid: N/A	ho	ole di	ametei	r:100	mm		
	5							material description			sity	hand	d l		
method & support	1 2 penetrati 3	water	samples & field tests	RL (m)	depth (m)	graphic loç	soil group symbol	SOIL NAME: plasticity or particle characteristics, colour, secondary and minor components	moisture	condition	consistency relative den	peneti mete (kPa	ro- 9)	soil origin, structure and additional observations	
				-	-	V///	CL	CLAY: low plasticity, red brown, pale brown.	<v< th=""><th>Vp</th><th>St</th><th></th><th>AL</th><th>LUVIUM</th><th>-</th></v<>	Vp	St		AL	LUVIUM	-
₹			SPT 28/30mm	(-	<i>[]]]]</i>	CL	CLAY: low plasticity, brown.			VSt		RE	SIDUAL SOIL	
			<u>N=R</u>	-6	-			Borehole BLA-C-BH4 terminated at 8.45 m Refusal							-
					9.0-										_
				[-										-
				-5	-										-
					-	-									-
				+	10.0-	1									-
					-	-									-
				-4	-								i		-
					11.0 —								i		-
I					-										-
				-3	-										-
					-	-									-
				-	12.0-										-
					-	-									-
				-2	-								1		-
b					13.0								i		-
				[-										-
				-1	-										-
1					-										-
I				-	14.0-	1									-
					-	-									-
2				-0	-										-
					15.0 —	-									-
I					-								Ì.		-
1				1	-								i		-
					-	-									-
meth DT AD AS HA W RR *	od diatub auger auger hand a washb rock ro bit sho	e drilling screwi auger bore biller bwn by	* ng* suffix	sup M C d pen wat	port mud casing etration er er	N no res rangin refusa Oct-12 wa el on date	nil istance g to i ater e shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone	soil mate based moisture D dry M moi W wet W p pla:	group erial o d on A e cone ist stic lin	o symbo lescript S 1726: dition	ion 2017		consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose	
B T V	blank I TC bit	bit			wat	ter inflow ter outflov	v	VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	vvi liqu	na Iimi	ι			MD medium dense D dense VD very dense	

CDF_0_10_00.4_LIBRARY (1).GLB rev:CDF_0_10_00.4 2021-09-30 Log_COF BOREHOLE: NON CORED_NRSC_COMB.GPJ <<DrawingFile>> 28/07/2023 10:46

			COI	I L	1						Boreł	nole	ID.		BLA-C-BH	5
	h	ind	orir	ha		A _	Ro	robolo			sheet	:			1 of 1	
	iy	1116	em	ıy I	LUĮ	y -	DU	Tenole			proje	ct n	0.		SYDGE3192	00
clien	it:	AL		onstr	uctio	on Pt	y Lta				date	star	ted:		07 Jul 2023	
princ	cipal:	NS	SW Dep	oartn	ent	of Ec	lucat	ion			date	com	plet	ed:	07 Jul 2023	
proje	ect:	No	orthern	Rive	er Sc	hool	Clus	ter			logge	d b	y:		WS	
loca	tion:	Bl	akebro	ok P	ublic	: Sch	lool				check	ked	by:		VN	
positi	on: E	: 5225	i36; N: 68′	8213 (MGA94)		surface elevation: 14.10 m (AHD)		angle	from ho	orizo	ntal:	90°		
drill m	nodel:	GOT2	2008, Truc	k mour	ted	mate	vrial cul	drilling fluid: N/A		hole d	liametei	r:1()0 m	m		
un	Б.					That		material description			sity	h	and			
method & support	1 2 penetrati	3 water	samples field test	RL (m)	depth (m)	graphic lo	soil group symbol	SOIL NAME: plasticity or particle characteristics, colour, secondary and minor components		moisture condition	consistency relative den	00 (I 0) (I) (I	netro- eter (Pa)		soil origin, structure additional observati	and ons
A D				-14	-		CL CL-CI	TOPSOIL: CLAY: low plasticity, dark brown, trace rootlets. CLAY: low plasticity, dark brown, trace gravels, fine to coarse grained, sub-angular. CLAY: medium to high plasticity, brown.	/ •]] [_]	<wp< td=""><td>S</td><td></td><td></td><td>AL</td><td>PSOIL</td><td></td></wp<>	S			AL	PSOIL	
¥				-13	- 1.0	-	1	Borehole BLA-C-BH5 terminated at 1.0 m Target depth								
				-12	2.0-	-										
				-11	3.0-	-										
				-10	4.0-	-										
				-9	5.0-	-										
				-8	- 6.0	-										
				-7	7.0-	-										
meth DT AD AS HA W RR * e.g. B T	hod diatu auge auge hand wash rock bit sh AD/T blanh TC b	be er drilling er screw d auger hbore roller hown by k bit	g* ving* v suffix	su M C per wa	pport mud casing netration etration ter	no rese rangin refuse -Oct-12 w el on date ter inflow	I nil sistance ig to al ater e shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered W VS VS van shear; peak/remouded (kPa) R refusal	so ma base oistu di m v v p p l l lice	il grou aterial ed on <i>i</i> ure cor ry noist ret lastic li quid lim	up symbo descript AS 1726: ndition mit nit	2017	,		consistency / relative de VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium d D dense	nsity

	ngineering Log - Borehole							Borehole ID.		-	BLA-C-BH6				
Fr								shee	t:		1 of 1				
	iyi									proje	ct no.		SYDGE319200		
clien	t:	ADCO Construction Pty Ltd										d: 07 Jul 2023			
princ	principal: NSW Department of Education									date	te completed: 07 Jul 2023				
project: Northern River School Cluster								logge	ed by:	WS					
ocat	ocation: Boardwater Public School							chec	ked by:		VN				
ositi	Disition: E: 522514; N: 6818205 (MGA94) surface elevation: 14.21 m (AHD) and					angle	from h	orizontal:	90°						
drill m	nodel: (GOT2	008, Truck	(moun	ted	mate	rial sub	drilling fluid: N/A	hole	diamete	er : 100 m	ım			
	u							material description		sity	hand				
support &	1 2 penetrat	water	field tests	RL (m)	depth (m)	graphic lo	soil group symbol	SOIL NAME: plasticity or particle characteristics, colour, secondary and minor components	moisture condition	kPa) (kPa) (kPa) (kPa)		-	soil origin, structure and additional observations		
2		Not Encountered		-14	- - - - 1.0		CL CL-CI	TOPSOIL: CLAY: low plasticity, dark brown, trace / rootlets.	~ <wp< td=""><td>S</td><td></td><td></td><td>SOIL/FILL</td></wp<>	S			SOIL/FILL		
				-12	2.0			raige, deput							
				-11	4.0-										
				-9	- 5.0 - - -										
				-8	6.0-										
				-7	7.0-										
meth DT AD AS HA W RR * e.g. B T	diatub auger auger hand a washt rock r bit sho AD/T blank TC bit	e drilling screwi auger bore bller bwn by bit	r ng* suffix	sup M C pen wat	Port mud casing etration Construction er er er lev wat	no ree rangir ✓ refusa Oct-12 we el on date ter inflow	I nil sistance ig to al ater e shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered W Nc SPT with solid cone Wp VS vane shear; peak/remouded (kPa) R refusal	soil grou material based on isture co dry moist wet plastic I liquid lir	up symb descrip AS 1726 ndition imit nit	iol & tion :2017	S S F St VS H FL VL L MI	nsistency / relative density S very soft soft firm St very stiff hard o friable L very loose loose D medium dense dense		

APPENDIX D: BOREHOLE LOGS FROM PREVIOUS GEOTECHNICAL INVESTIGATION (DOUGLAS PARTNERS)

SURFACE LEVEL: 13.8 AHD EASTING: 522552 NORTHING: 6818204 DIP/AZIMUTH: 90°/-- BORE No: 1 PROJECT No: 216628.00 DATE: 7/10/2022 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log Description Dynamic Penetrometer Test Water Depth 뭅 Sample of Depth (blows per 100mm) Results & Comments (m) Type Strata 15 20 TOPSOIL/FILL/Clayey SAND (SC): fine grained, dark $\mathcal{Y} \times$ 0.1 brown, appeared well compacted 0.3 Clay (CI): medium plasticity, dark brown, trace fine gravel, w>PL, stiff, residual - brown 07 - high plasticity, red with brown, no gravel 1.0 4,7,10 N = 17 S 1.3 - very stiff 1.45 2 -2 Ţ 2.5 6.7.9 S N = 16 2.95 3 - 3 36 - red with grey and orange, stiff 0 4 4.0 - 4 4,4,6 N = 10 s 4.45 5 5 55 2,7,3 N = 10 S 5.95 5.95 6 - 6 Bore discontinued at 5.95m. Limit of Investigation 7 • 7

RIG: Christie Soil Rig TYPE OF BORING: Auger **DRILLER:** Geoserve

LOGGED: MM/AB

CASING: Uncased

WATER OBSERVATIONS: Free groundwater encountered at 2.4 m depth during investigation **REMARKS:**

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 Ux
 Tube sample (x mm dia.)
 PL(D) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 F
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 F
 Water level
 V
 Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3 ⊠ Cone Penetrometer AS1289.6.3.2

Douglas Partners Geotechnics | Environment | Groundwater

NSW Department of Education Proposed Schools Flood Recovery Blakebrook Public School

SURFACE LEVEL: 14.7 AHD EASTING: 522492 NORTHING: 6818222 DIP/AZIMUTH: 90°/-- BORE No: 2 PROJECT No: 216628.00 DATE: 7/10/2022 SHEET 1 OF 1

Sampling & In Situ Testing Description Graphic Log Dynamic Penetrometer Test Water Depth Sample 뭅 of Depth (blows per 100mm) Results & Comments (m) Type Strata 15 20 10 TOPSOIL/FILL/Clayey SAND (SC): fine grained, dark YXD 0.1 0.1 brown, appeared well compacted Clay (CI): medium plasticity, dark brown, trace fine gravel, D 0.4 w>PL, stiff, residual D 07 07 - high plasticity, brown 1.0 1.1 - brown with red, no gravel 4,6,7 N = 13 S 1.45 2 -2 T 2.5 3.4.5 s N = 9 2.8 - medium plasticity, grey with red and orange 2.95 - 3 - 3 •4 4.0 - 4 4,7,12 N = 19 s 4.3 - w<PL, very stiff 4.45 5 5 5.5 13.30/100 5.6 s - hard, tending to rock refusal 5.75 5.75 Bore discontinued at 5.75m. Limit of Investigation 6 -6 7 • 7

RIG: Christie Soil Rig TYPE OF BORING: Auger

CLIENT:

PROJECT:

LOCATION:

NSW Department of Education

Blakebrook Public School

Proposed Schools Flood Recovery

DRILLER: Geoserve

LOGGED: MM/AB

CASING: Uncased

WATER OBSERVATIONS: Free groundwater encountered at 2.1 m depth during investigation **REMARKS:**

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 Ux
 Tube sample (x mm dia.)
 PL(D) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 F
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 F
 Water level
 V
 Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3 ⊠ Cone Penetrometer AS1289.6.3.2

SURFACE LEVEL: 15.2 AHD **EASTING:** 522420 NORTHING: 6818215 DIP/AZIMUTH: 90°/--

BORE No: 3 PROJECT No: 216628.00 DATE: 7/10/2022 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log Description Dynamic Penetrometer Test Water Depth 뭅 Sample of Depth (blows per 100mm) Type Results & Comments (m) Strata 15 20 10 TOPSOIL/FILL/Clayey SAND (SC): fine grained, dark YX0.1 0.2 brown, appeared well compacted -12 I Clay (CI): medium plasticity, dark brown, trace fine gravel, I w>PL, stiff, residual - brown 1.0 - 1 4.6.8 S N = 14 1.45 1.6 - high plasticity, red with grey and orange, no gravel -2 -2 <u>.</u>ლ Ţ 2.5 4.6.7 S N = 13 2.95 -3 - 3 -0 • 4 4.0 - 4 4,6,6 s N = 124.45 5 5 <u>.</u> 55 2,6,4 S N = 10 5.95 5.95 6 - 6 Bore discontinued at 5.95m. Limit of Investigation 7 • 7 RIG: Christie Soil Rig

TYPE OF BORING: Auger

CLIENT:

PROJECT:

LOCATION:

NSW Department of Education

Blakebrook Public School

Proposed Schools Flood Recovery

DRILLER: Geoserve

LOGGED: MM/AB

CASING: Uncased

WATER OBSERVATIONS: Free groundwater encountered at 2.3 m depth during investigation **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample G P U,x W Core drilling Disturbed sample Environmental sample CDE ₽

Sand Penetrometer AS1289.6.3.3 \boxtimes Cone Penetrometer AS1289.6.3.2

SURFACE LEVEL: 14.4 AHD EASTING: 522439 NORTHING: 6818167 DIP/AZIMUTH: 90°/-- BORE No: 4 PROJECT No: 216628.00 DATE: 7/10/2022 SHEET 1 OF 1

Sampling & In Situ Testing Description Graphic Dynamic Penetrometer Test Water Depth Log Sample 뭅 of Depth (blows per 100mm) Results & Comments (m) Type Strata 20 10 15 TOPSOIL/FILL/Clayey SAND (SC): fine grained, dark 0.1 0.2 brown, appeared well compacted FILL/CLAY (CI): medium plasticity, red with brown, trace fine gravel, w>PL, appeared well compacted FILL/Sandy GRAVEL (GP): fine to medium gravel, red with grey, fine to coarse sand, moist, appeared well 0.8 \compacted 1.0 1.0 CLAY (CI): medium plasticity, brown with red, w>PL, stiff, 2,3,6 N = 9 residual S - high plasticity 1.45 -2 -2 Ţ 2.5 4.7.8 S N = 15 2.8 - very stiff 2.95 - 3 -3 36 - stiff -4 4.0 - 4 4,5,6 s N = 114.45 5 5 55 3,6,6 S N = 125.95 5.95 6 Bore discontinued at 5.95m. Limit of Investigation ·6 7 • 7

RIG: Christie Soil Rig TYPE OF BORING: Auger

CLIENT:

PROJECT:

LOCATION:

NSW Department of Education

Blakebrook Public School

Proposed Schools Flood Recovery

DRILLER: Geoserve

LOGGED: MM/AB

CASING: Uncased

WATER OBSERVATIONS: Free groundwater encountered at 2.4 m depth during investigation **REMARKS:**

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3 ⊠ Cone Penetrometer AS1289.6.3.2

APPENDIX E: LABORATORY TESTING RESULTS

CERTIFICATE OF ANALYSIS

Work Order	: EB2320992	Page	: 1 of 7
Client	: TETRA TECH COFFEY PTY LTD	Laboratory	Environmental Division Brisbane
Contact	: Viet Nguyen	Contact	: Khaleda Ataei
Address	: Level 3, 101 Sussex Street	Address	: 2 Byth Street Stafford QLD Australia 4053
	Sydney		
Telephone	:	Telephone	: + 61 2 8784 8555
Project	: NRSC 754-SYDGE319200	Date Samples Received	: 11-Jul-2023 23:47
Order number	:	Date Analysis Commenced	: 12-Jul-2023
C-O-C number	:	Issue Date	: 17-Jul-2023 16:45
Sampler	: RUBY FRITZ, WILL SHU		Hac-MRA NATA
Site	:		
Quote number	: EN/222		Accorditation No. 835
No. of samples received	: 22		Accredited for compliance with
No. of samples analysed	: 22		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Inorganics, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Corrosion assessment for Concrete and Steel piles in soil per Australian Standard AS2159-2009 uses a combination of soil and groundwater data (Tables 6.4.2 C & 6.5.2 C). In the absence of groundwater data, assessment has been made against soil criteria only. Refer to AS2159-2009 section 6.4 for further interpretation of corrosion assessment. ALS is not NATA accredited for Corrosion Assessment comments
- EA167: Soil Condition A High permeability soils (e.g. sands and gravels) which are in groundwater
- EA167: Soil Condition B Low permeability soils (e.g. silts and clays) or all soils above groundwater

Page : 3 of 7 Work Order : EB2320992 Client : TETRA TECH COFFEY PTY LTD Project : NRSC 754-SYDGE319200

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	Blakebrook C-BH1_0.8-1.25	Blakebrook C-BH1_3.8-4.25	Blakebrook C-BH2_0.8-1.25	Blakebrook C-BH2_5.3-5.75	Blakebrook C-BH3_3.8-4.25
		Sampli	ng date / time	07-Jul-2023 00:00	07-Jul-2023 00:00	10-Jul-2023 00:00	10-Jul-2023 00:00	10-Jul-2023 00:00
Compound	CAS Number	LOR	Unit	EB2320992-001	EB2320992-002	EB2320992-003	EB2320992-004	EB2320992-005
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	5.3	5.1	5.3	5.2	4.5
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	10	23	10	15	142
EA055: Moisture Content (Dried @ 105-1	10°C)							
Moisture Content		0.1	%	29.9	37.6	29.9	40.9	36.4
EA080: Resistivity								
Resistivity at 25°C		1	ohm cm	100000	43500	100000	66700	7040
EA167: Corrosion Classification (per AS2	2159-2009)							
Ø Exposure Classification - Concrete Piles Soil Condition A		-	-	Moderate	Moderate	Moderate	Moderate	Severe
Exposure Classification - Concrete Piles Soil Condition B		-	-	Mild	Mild	Mild	Mild	Moderate
Ø Exposure Classification - Steel Piles Soil Condition A		-	-	Non Aggressive	Non Aggressive	Non Aggressive	Non Aggressive	Mild
Ø Exposure Classification - Steel Piles Soil Condition B		-	-	Non Aggressive				
ED040S: Soluble Major Anions								
Sulfate as SO4 2-	14808-79-8	10	mg/kg	<10	20	<10	20	<10
ED045G: Chloride by Discrete Analyser								
Chloride	16887-00-6	10	mg/kg	20	30	20	20	100

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	Blakebrook C-BH3_8.3-8.75	Blakebrook C-BH4_3.8-4.25	Blakebrook C-BH4_6.8-7.25	Broadwater C-BH1_1.0-1.45	Broadwater C-BH1_5.3-5.75
		Sampli	ng date / time	10-Jul-2023 00:00	07-Jul-2023 00:00	07-Jul-2023 00:00	03-Jul-2023 00:00	03-Jul-2023 00:00
Compound	CAS Number	LOR	Unit	EB2320992-006	EB2320992-007	EB2320992-008	EB2320992-009	EB2320992-010
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	5.4	5.1	6.1	5.4	4.2
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	μS/cm	22	19	14	42	52
EA055: Moisture Content (Dried @ 105-1	10°C)							
Moisture Content		0.1	%	39.8	36.0	31.1	35.3	17.5
EA080: Resistivity								
Resistivity at 25°C		1	ohm cm	45400	52600	71400	23800	19200
EA167: Corrosion Classification (per AS2	2159-2009)							
Ø Exposure Classification - Concrete Piles		-	-	Moderate	Moderate	Mild	Moderate	Severe
Soil Condition A								
Ø Exposure Classification - Concrete Piles		-	-	Mild	Mild	Non Aggressive	Mild	Moderate
Soil Condition B								
Ø Exposure Classification - Steel Piles Soil		-	-	Non Aggressive	Non Aggressive	Non Aggressive	Non Aggressive	Mild
Condition A				N	N A	N	N A	
© Exposure Classification - Steel Piles Soil		-	-	Non Aggressive				
ED040S: Soluble Major Anions		10						
Sulfate as SO4 2-	14808-79-8	10	mg/kg	20	20	20	60	90
ED045G: Chloride by Discrete Analyser								
Chloride	16887-00-6	10	mg/kg	30	20	10	20	20

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	Broadwater C-BH2_3.8-4.00	Broadwater C-BH2_6.8-7.25	Empire Vale C-BH1_3.9-4.25	Empire Vale C-BH1_12.8-13.25	Empire Vale C-BH2_0.8-1.1
		Sampli	ng date / time	03-Jul-2023 00:00	03-Jul-2023 00:00	05-Jul-2023 00:00	05-Jul-2023 00:00	06-Jul-2023 00:00
Compound	CAS Number	LOR	Unit	EB2320992-011	EB2320992-012	EB2320992-013	EB2320992-014	EB2320992-015
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	4.4	5.5	9.0	9.4	5.8
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	μS/cm	97	8	619	1080	567
EA055: Moisture Content (Dried @ 105-11	10°C)							
Moisture Content		0.1	%	18.5	19.4	40.5	36.5	30.8
EA080: Resistivity								
Resistivity at 25°C		1	ohm cm	10300	125000	1620	926	1760
EA167: Corrosion Classification (per AS2	159-2009)							
Ø Exposure Classification - Concrete Piles		-	-	Severe	Moderate	Mild	Mild	Mild
Soil Condition A								
Ø Exposure Classification - Concrete Piles Soil Condition B		-	-	Moderate	Mild	Non Aggressive	Non Aggressive	Non Aggressive
Ø Exposure Classification - Steel Piles Soil		-	-	Mild	Non Aggressive	Moderate	Severe	Moderate
				New Assuration	New Assuration	Mila	Madausta	Mila
© Exposure Classification - Steel Piles Soil		-	-	Non Aggressive	Non Aggressive	WIIIC	woderate	MIIIC
ED040S: Soluble Major Anjons					l	I		
Sulfate as SO4 2-	14909 70 9	10	ma/ka	210	20	210	170	380
	14000-79-0	10	iiig/kg	210	20	210		500
ED045G: Chloride by Discrete Analyser		10						1010
Chloride	16887-00-6	10	mg/kg	10	<10	1190	2230	1040

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	Empire Vale C-BH2_12.8-13.25	Wardell C-BH1_2.3-2.75	Wardell C-BH2_0.8-1.0	Wardell C-BH2_5.3-5.45	Wardel C-BH2_2.3-2.75m
		Sampli	ng date / time	06-Jul-2023 00:00	04-Jul-2023 00:00	04-Jul-2023 00:00	04-Jul-2023 00:00	04-Jul-2023 00:00
Compound	CAS Number	LOR	Unit	EB2320992-016	EB2320992-017	EB2320992-019	EB2320992-020	EB2320992-021
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	9.3	4.9	5.5	6.5	4.8
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	1220	33	19	17	48
EA055: Moisture Content (Dried @ 105-1	10°C)							
Moisture Content		0.1	%	39.0	20.0	11.8	22.2	20.7
EA080: Resistivity								
Resistivity at 25°C		1	ohm cm	820	30300	52600	58800	20800
EA167: Corrosion Classification (per AS2	2159-2009)							
Ø Exposure Classification - Concrete Piles		-	-	Mild	Moderate	Moderate	Mild	Moderate
Soil Condition A								
Ø Exposure Classification - Concrete Piles Soil Condition B		-	-	Non Aggressive	Mild	Mild	Non Aggressive	Mild
Ø Exposure Classification - Steel Piles Soil		-	-	Severe	Mild	Non Aggressive	Non Aggressive	Mild
Condition A								
Ø Exposure Classification - Steel Piles Soil		-	-	Moderate	Non Aggressive	Non Aggressive	Non Aggressive	Non Aggressive
Condition B								
ED040S: Soluble Major Anions								
Sulfate as SO4 2-	14808-79-8	10	mg/kg	170	80	30	30	120
ED045G: Chloride by Discrete Analyser								
Chloride	16887-00-6	10	mg/kg	2760	<10	<10	10	<10

Sub-Matrix: SOIL (Matrix: SOIL)		0	Sample ID	Empire C-BH2_1.1-2.75m	Empire C-BH1_3.8-3.9m	 	
		Sampli	ng date / time	04-Jui-2023 00:00	04-Jul-2023 00:00	 	
Compound	CAS Number	LOR	Unit	EB2320992-022	EB2320992-023	 	
				Result	Result	 	
EA002: pH 1:5 (Soils)							
pH Value		0.1	pH Unit	5.8	9.1	 	
EA010: Conductivity (1:5)							
Electrical Conductivity @ 25°C		1	µS/cm	455	648	 	
EA055: Moisture Content (Dried @ 105-1	10°C)						
Moisture Content		0.1	%	30.5	35.2	 	
EA080: Resistivity							
Resistivity at 25°C		1	ohm cm	2200	1540	 	
EA167: Corrosion Classification (per AS2	2159-2009)						
Ø Exposure Classification - Concrete Piles		-	-	Mild	Mild	 	
Soli Condition A				Non Aggregoive	Non Aggregoive		
Soil Condition B		-	-	Non Aggressive	Non Aggressive	 	
Ø Exposure Classification - Steel Piles Soil		-	-	Mild	Moderate	 	
Condition A							
Ø Exposure Classification - Steel Piles Soil		-	-	Non Aggressive	Mild	 	
Condition B							
ED040S: Soluble Major Anions							
Sulfate as SO4 2-	14808-79-8	10	mg/kg	320	200	 	
ED045G: Chloride by Discrete Analyser							
Chloride	16887-00-6	10	mg/kg	800	1240	 	

Coffey Testing Pty Ltd ABN 92 114 364 046 86A Yarraman Place Virginia QLD 4014

Phone: +61 7 3569 8920

Report No: BRIS23S-03735-1 Issue No: 1 **Material Test Report** Accredited for compliance with ISO/IEC 17025 -Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of Client: Tetra Tech Coffey Pty Ltd (Brisbane) level 5, 12 Creek Street NATA the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates Brisbane QLD 4000 **Principal:** ղո Λ Π Project No.: TESTBRIS00394AA Approved Signatory: Ben Herron **IIAC-MRA** Project Name: NRSC (Geotechnician) NATA Accredited Laboratory Number:431 Lot No.: TRN: **`**. Date of Issue: 21/07/2023

Sample Details

Sample ID:
Date Sampled:
Source:
Material:
Specification:
Sampling Method:
Project Location:
Sample Location:

BRIS23S-03735 07/07/2023 On site Silty Clay No Specification Submitted by client* Blakebrook, NSW BH1 2.3-2.75m

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	47.2	
Date Tested		12/07/2023	
Sample History	AS 1289.1.1	Oven-Dried	
Preparation	AS 1289.1.1	Dry-Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	12.0	
Mould Length (mm)		249.9	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	91	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	43	
Plasticity Index (%)	AS 1289.3.3.1	48	
Date Tested		20/07/2023	

Comments

*Results relate only to the items tested or sampled.

Coffey Testing Pty Ltd ABN 92 114 364 046 86A Yarraman Place Virginia QLD 4014

			Phone: +61 7 3569 89	Phone: +61 7 3569 8920				
Material Te	est Report			Report No: BRIS23	S-03736-1 Issue No: 1			
Client: Tetra level Brist	a Tech Coffey Pty Ltd (Br 5, 12 Creek Street bane QLD 4000	isbane)	A NATA th in	ccredited for compliance with ISO/ ssting. NATA is a signatory to the ecognition Arrangement for the mu e equivalence of testing, medical spection, proficiency testing scher forence metarials producers report	IEC 17025 - ILAC Mutual utual recognition of testing, calibration, me providers and rts and certificates			
Principal: Project No.: TES Project Name: NRS Lot No.:	TBRIS00394AA SC	TRN:	A A	pproved Signatory: Ben Herron Seotechnician) ATA Accredited Laboratory Numb ate of Issue: 21/07/2023	er:431			
Comple Dataile								
Sample ID: Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:	BRIS23S-03736 07/07/2023 On site Clay No Specification Submitted by client* Blakebrook, NSW BH1 6.8-7.25m							
Test Results								
Moisture Content (%) Date Tested)	AS 1289.2.1.1		37.0 12/07/2023				

Coffey Testing Pty Ltd ABN 92 114 364 046 86A Yarraman Place Virginia QLD 4014

Phone: +61 7 3569 8920

Report No: BRIS23S-03738-1 Issue No: 1 **Material Test Report** Accredited for compliance with ISO/IEC 17025 -Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of Client: Tetra Tech Coffey Pty Ltd (Brisbane) level 5, 12 Creek Street NATA the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates Brisbane QLD 4000 **Principal:** ղո Λ Π Project No.: TESTBRIS00394AA Approved Signatory: Ben Herron **IIAC-MRA** Project Name: NRSC (Geotechnician) NATA Accredited Laboratory Number:431 Lot No.: TRN: **`**. Date of Issue: 21/07/2023

Sample Details

Sample ID:	
Date Sampled:	
Source:	
Material:	
Specification:	
Sampling Method:	
Project Location:	
Sample Location:	

10/07/2023 On site Silty Clay No Specification Submitted by client* Blakebrook, NSW BH2 3.8-4.25m

BRIS23S-03738

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	57.5	
Date Tested		12/07/2023	
Sample History	AS 1289.1.1	Oven-Dried	
Preparation	AS 1289.1.1	Dry-Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	12.0	
Mould Length (mm)		249.8	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	61	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	32	
Plasticity Index (%)	AS 1289.3.3.1	29	
Date Tested		21/07/2023	

Comments

*Results relate only to the items tested or sampled.

Coffey Testing Pty Ltd ABN 92 114 364 046 86A Yarraman Place Virginia QLD 4014

		Phone: +61 7 3569 8920	
TESTING	i i		Report No: BRIS23S-03739-1
Materia	Test Report		Issue No: 1
Client:	Tetra Tech Coffey Pty Ltd (level 5, 12 Creek Street Brisbane QLD 4000	Brisbane)	Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition o the equivalence of testing, medical testing, calibration inspection, proficiency testing scheme providers and reference materials producers reports and certificates
Principal:			and the second s
Project No.:	TESTBRIS00394AA		Approved Signatory: Ben Herron
Project Name:	NRSC		(Geotechnician) NATA Accredited Laboratory Number:431
Lot No.:		TRN:	d_{n1n1} Date of Issue: 21/07/2023
Sample Det	ails		
Sample ID: Date Sampled: Source: Material: Specification: Sampling Meth Project Location Sample Location	nod: Blakebrook, NSW BRIS235-03739 10/07/2023 On site Silty Clay No Specification Submitted by client Blakebrook, NSW on: BH2 6.8-7.25m	K	
Test Result	S		
Description		Method	Result Limits
Moisture Conte	nt (%)	AS 1289.2.1.1	63.5
			12/01/2023

Comments

*Results relate only to the items tested or sampled.

Coffey Testing Pty Ltd ABN 92 114 364 046 86A Yarraman Place Virginia QLD 4014

TESTING		Phone: +61 7 3569 8920			
et Poport			Report No: BRIS23S-03741-1 Issue No: 1		
Tech Coffey Pty Ltd (Bris 5, 12 Creek Street bane QLD 4000	sbane)	NATA	Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates		
FBRIS00394AA C 1	ſRN:	lac-mex	Approved Signatory: Ben Herron (Geotechnician) NATA Accredited Laboratory Number:431 Date of Issue: 21/07/2023		
BRIS23S-03741 10/07/2023 On site Clay No Specification Submitted by client* Blakebrook, NSW BH3 2.3-2.75m					
	Method		Result Limits		
			12/07/2023		
	est Report	PSR Report 1 Tech Coffey Pty Ltd (Brisbane) 5, 12 Creek Street 1 ane QLD 4000 TBRIS00394AA C TRN: BRIS23S-03741 10/07/2023 On site Clay No Specification Submitted by client* Blakebrook, NSW BH3 2.3-2.75m Method AS 1289.2.1.1	Phone: +61 7 366		

Comments *Results relate only to the items tested or sampled.

Material Test Report

Tetra Tech Coffey Pty Ltd (Brisbane) level 5, 12 Creek Street Brisbane QLD 4000

Principal: Project No.: TESTBRIS00394AA Project Name: NRSC Lot No.:

Sample Details

Sample ID: Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

BRIS23S-03742 10/07/2023 On site Silty Clay No Specification Submitted by client* Blakebrook, NSW BH3 5.3-5.75m

TRN:

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	62.5	
Date Tested		12/07/2023	
Sample History	AS 1289.1.1	Oven-Dried	
Preparation	AS 1289.1.1	Dry-Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	11.0	
Mould Length (mm)		249.9	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	62	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	41	
Plasticity Index (%)	AS 1289.3.3.1	21	
Date Tested		20/07/2023	

Client:

Brisbane Laboratory

Coffey Testing Pty Ltd ABN 92 114 364 046 86A Yarraman Place Virginia QLD 4014

Phone: +61 7 3569 8920

Report No: BRIS23S-03742-1

Issue No: 1

Accredited for compliance with ISO/IEC 17025 -Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates

Approved Signatory: Ben Herron (Geotechnician) NATA Accredited Laboratory Number:431 Date of Issue: 21/07/2023

Λ Π

Comments

*Results relate only to the items tested or sampled.

Coffey Testing Pty Ltd ABN 92 114 364 046 86A Yarraman Place Virginia QLD 4014

Phone: +61 7 3569 8920

Report No: BRIS23S-03744-1 Issue No: 1 **Material Test Report** Accredited for compliance with ISO/IEC 17025 -Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of Client: Tetra Tech Coffey Pty Ltd (Brisbane) level 5, 12 Creek Street NATA the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates Brisbane QLD 4000 **Principal:** ղո Λ Π Project No.: TESTBRIS00394AA Approved Signatory: Ben Herron **IIAC-MRA** Project Name: NRSC (Geotechnician) NATA Accredited Laboratory Number:431 Lot No.: TRN: **`**. Date of Issue: 21/07/2023

Sample Details

Sample ID:
Date Sampled:
Source:
Material:
Specification:
Sampling Method:
Project Location:
Sample Location:

BRIS23S-03744 07/07/2023 On site Clay No Specification Submitted by client* Blakebrook, NSW BH4 2.3-2.75m

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	55.0	
Date Tested		12/07/2023	
Sample History	AS 1289.1.1	Oven-Dried	
Preparation	AS 1289.1.1	Dry-Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	13.0	
Mould Length (mm)		250	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	70	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	39	
Plasticity Index (%)	AS 1289.3.3.1	31	
Date Tested		20/07/2023	

Comments

*Results relate only to the items tested or sampled.

Coffey Testing Pty Ltd ABN 92 114 364 046 86A Yarraman Place Virginia QLD 4014

Phone: +61 7 3569 8920

TESTING		Phone: +61 7 356	Phone: +61 7 3569 8920			
TESTING				Report No: BRIS23S-03745		
Matorial To	st Ronart				Issue No: 1	
Client: Tetra level 5 Brisba	Tech Coffey Pty Ltd (Br 5, 12 Creek Street ane QLD 4000	isbane)	NATA	Accredited for compliance with ISO/ Testing. NATA is a signatory to the Recognition Arrangement for the mi the equivalence of testing, medical inspection, proficiency testing scher	/IEC 17025 - ILAC Mutual utual recognition of testing, calibration, me providers and	
Principal: Project No.: TEST Project Name: NRSC Lot No.:	BRIS00394AA C	TRN:	Hac-MRA	Approved Signatory: Ben Herron (Geotechnician) NATA Accredited Laboratory Numb Date of Issue: 21/07/2023	rts and certificates	
Osmula Dataila						
Sample ID: Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:	BRIS23S-03745 07/07/2023 On site Clay No Specification Submitted by client* Blakebrook, NSW BH4 5.3-5.75m					
Test Results						
Description Moisture Content (%)		Method AS 1289 2 1 1		Result 55.5	Limits	
Date Tested				12/07/2023		

Coffey Testing Pty Ltd ABN 92 114 364 046 86A Yarraman Place Virginia QLD 4014

Phone: +61 7 3569 8920

Comments

Coffey Testing Pty Ltd ABN 92 114 364 046 86A Yarraman Place Virginia QLD 4014

Phone: +61 7 3569 8920

Comments

Coffey Testing Pty Ltd ABN 92 114 364 046 86A Yarraman Place Virginia QLD 4014

Phone: +61 7 3569 8920

Comments

Form No: 18986, Report No: CBR:BRIS23S-03740

Coffey Testing Pty Ltd ABN 92 114 364 046 86A Yarraman Place Virginia QLD 4014

Phone: +61 7 3569 8920

Comments